期刊文献+

砂土地震液化分析中Newmark时域离散的误差评估 被引量:1

Temporal discretization error estimation for the Newmark scheme in sand liquefaction analysis
下载PDF
导出
摘要 显式有限元存在计算精度低,对计算时间步长较敏感等缺点。基于后验误差评估的方法,给出了显式算法下Newmark时域离散误差的来源和评估方法。通过饱和砂土地震液化响应的数值算例评估了时间步长对计算结果的影响。数值分析结果表明:时间步长不同,结点位移和单元孔压的时程曲线明显不同,同时计算耗时也呈双曲线关系;相对误差主要分布在变形较大的区域,全域平均相对误差在动力响应剧烈的时间段内较大。通过对计算时间步长和离散误差的评估,可有效恰当的对计算时间步长进行取值,也为自动步长调整提供了依据。 The disadvantage of the explicit finite element method is low accuracy and sensitive to the time step size.In this paper,a posteriori error evaluation method was introduced for the explicit Newmark scheme,giving the source and estimation method of the Newmark temporal discretization error. Then,a numerical example of saturated sand liquefaction in earthquake was conducted to evaluate the influence of time step size on the calculation result.The results showed that the time step size has effects on the time histories of node displacements and element pore's water pressures. Moreover,the relation between the computation cost and the time step size is a hyperbolic curve.The relative error is mainly generated in the area with large deformation and the period with rapid dynamic response.The mean relative error in the entire area is larger in the time range with violent dynamic response. Through the estimated discrete error,a proper time step size can be determined to meet the desired accuracy. For automatic time step adjustment,the error estimation can provide a criterion to control the time step size.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2015年第3期322-326,共5页 Journal of Harbin Engineering University
基金 国家863计划资助项目(2012AA112510)
关键词 误差评估 砂土液化 堤坝 地震 NEWMARK法 计算成本 error estimation sand liquefaction embankment earthquake Newmark method computation time
  • 相关文献

参考文献20

  • 1NEWMARK N M. A method of computation for structure dy- namics [ J]. Journal of the Engineering Mechanics Division, 1959, 85(3): 67-94.
  • 2HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft [ J]. Journal of the Aeronautical Sciences, 1950, 17(9) :540-550.
  • 3WILSON E L. Nonlinear dynamic analysis of complex struc- tures [ J ]. Earthquake Engineering and Structural Dynamics, 1973, 1 : 241-252.
  • 4钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:509
  • 5郭泽英,李青宁,张守军.结构地震反应分析的一种新精细积分法[J].工程力学,2007,24(4):35-40. 被引量:15
  • 6李爽,翟长海,刘洪波,谢礼立.Newmark积分方法在负刚度时的数值稳定性分析[J].哈尔滨工业大学学报,2011,43(8):1-5. 被引量:5
  • 7ZIENKIEWICZ O C, XIE Y M. A simple error estimator and adaptive time stepping procedure for dynamic analysis [ J ]. Earthquake Engineering & Structural Dynamics, 1991, 20 (9) : 871-887.
  • 8ZENG L F, WIBERG N E, LI X D. A posteriori local error estimation and adaptive time-stepping for Newmark integra- tion in dynamic analysis [ J ]. Earthquake Engineering & Structural Dynamics, 1992, 21(7) :555-571.
  • 9WIBERG N E, LI X D. A post-processing technique and an a posteriori error estimate for the newmark method in dynam- ic analysis [ J ]. Earthquake Engineering & Structural Dy- namics, 1993, 22(6): 465-489.
  • 10SLOAN S W, ABBO A J. Biot consolidation analysis with automatic time stepping and error control Part 2: Applica- tions [ J]. International Journal for Numerical and Analyti- cal Methods in Geomechanics, 1999, 23(6) : 493-529.

二级参考文献46

共引文献525

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部