期刊文献+

基于多参数组合优化的微弱信号检测方法 被引量:2

Weak Signal Detection Method Based on Muti-parameter Combination Optimization
下载PDF
导出
摘要 针对传统检测方法对混沌背景下微弱信号检测能力不足的问题,提出了基于多参数组合优化的微弱信号检测方法。该方法利用相空间重构和支持向量机(SVM)模型参数间的相互依赖、相互制约的关系,将相空间重构和SVM模型参数作为遗传算法(GA)的个体,以混沌时间序列预测均方根误差的倒数作为适应度函数,采用实数编码,通过循环迭代获得最优参数值进行建模、训练和预测,从一步预测误差中将混沌背景中微弱信号(包括瞬态信号和周期信号)检测出来。分别以Lorenz系统和实测的IPIX雷达数据作为混沌背景噪声进行实验研究,仿真验证表明,所提方法能够有效地将混沌背景噪声中瞬态信号和周期信号检测出来,与传统的参数求取方法相比,预测精度和检测性能均得到显著提高。 Aiming at the poor performance of weak signal detection of the traditional detection method in chaotic background,a weak signal detection method was proposed based on muti-parameter combination optimization.The phase space reconstruction parameters and SVM model parameters were taken as genetic algorithm individuals by using the relationship of the interdependence and mutual restraint between them,while the reciprocal of the chaotic time series prediction root mean square error was taken as the fitness function of genetic algorithm,and the real number coding was adopting.Modeling,training and predicting by utilizing the obtained optimal parameter values which were obtained through the loop iteration method,then the weak signal including transient signal and periodic signal embedded in the chaotic background were detected from the one-step predictive error.Lorenz system and IPIX Sea Clutter was used as chaotic background noise for experimental research respectively,simulation results showed that this method was highly effective to detect weak transient signal and periodic signal from a chaotic background.Compared with traditional parameters optimization algorithm,the prediction accuracy and detection performance of the new method was improved significantly.
出处 《探测与控制学报》 CSCD 北大核心 2015年第1期20-26,共7页 Journal of Detection & Control
基金 国家自然科学基金(61072133) 江苏省产学研联合创新资金计划(BY2013007-02)(BY2011112) 江苏省高校科研成果产业化推进项目(JHB2011-15) 江苏省"信息与通信工程"优势学科平台资助 江苏省"六大人才高峰"项目
关键词 微弱信号检测 混沌 参数组合优化 支持向量机 遗传算法 weak signal detection chaos parameters combination optimization support vector machine genetic algorithm
  • 相关文献

参考文献17

  • 1Hayes B. A progress report on the fine art of turning lit- erature into drivel [J]. Computer recreations, Sci. Am, 1983,249(5) : 18-28.
  • 2林嘉宇,王跃科,黄芝平,沈振康.语音信号相空间重构中时间延迟的选择──复自相关法[J].信号处理,1999,15(3):220-225. 被引量:43
  • 3Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information[J . Physical review A, 1986,33(2) : 1134-1140.
  • 4Grassberger P,Procaccia I. Measuring the strangeness of strange attractors J . Physica D: Nonlinear Phenomena, 1983,9(1) : 189-208.
  • 5Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase space reconstruction u- sing a geometrical construction[J . PhysiCal review A, 1992,45 (6) = 3403-3411.
  • 6Cao L . Practical method for determining the minimum embedding dimension of a scalar time seriesEJ . Physica D: 1997,110(1) :43-50.
  • 7Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, de- lay times and embedding windows EJ . Physica D: Non- linear Phenomena, 1999,127(1) : 48-60.
  • 8Ataei M, Lohmann B, Khaki-Sedigh A, et al. Model based method for estimating an attractor dimension from uni/ multivariate chaotic time series with application to Bre- men climatic dynamics J . Chaos, Solitons & Fractals, 2004,19(5) : 1131-1139.
  • 9Haykin S, Li X B. Detection of signals in chaos J . Pro- ceedings of the IEEE,1995,83(1):95-122.
  • 10张家树,肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报,2000,49(3):403-408. 被引量:149

二级参考文献80

共引文献423

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部