期刊文献+

一种基于查询加权的用户建模方法

A Query Weighted-Based Method for User Modeling
下载PDF
导出
摘要 通过分析用户的查询日志,模拟用户与搜索引擎之间的交互过程,提出一种基于查询加权的用户建模方法。首先,对查询日志进行会话分割;然后,利用会话中用户查询出现的次数、持续时间及所点击的URL排名等行为信息,计算查询权重;最后,采用兴趣投票的方式,完成用户模型的构建。在AOL(美国在线)查询日志数据集上的测试结果表明,基于查询加权的用户建模方法在用户兴趣预测上取得较好的效果。 A query weighted-based method is proposed for user modeling by simulating the interaction between user and search engine. First, the query log is divided into sessions according to the session division principle. Then, for each session, a group of user behavior information, such as query frequency, duration and the ranks of the clicked URLs, are employed to calculate the weight of queries. Finally, the voting method is used to generate user model. The experiment results show the effectiveness of the method over the AOL query log dataset.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期227-233,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家自然科学基金(61403262) 辽宁省教育厅科学技术研究项目(L2013066)资助
关键词 用户建模 查询日志 会话分割 查询加权 user modeling query log session division query weighted
  • 相关文献

参考文献13

  • 1许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 2吴丽花,刘鲁.个性化推荐系统用户建模技术综述[J].情报学报,2006,25(1):55-62. 被引量:104
  • 3岑荣伟,刘奕群,张敏,茹立云,马少平.基于日志挖掘的搜索引擎用户行为分析[J].中文信息学报,2010,24(3):49-54. 被引量:31
  • 4Chen J, Nairn R, Nelson L, et al. Short and tweet: experiments on recommending content from infor- mation streams // Proceedings of the SIGCHI Confe- rence on Human Factors in Computing Systems. Atlanta: ACM, 2010:1185-1194.
  • 5Matthijs N, Radlinski F. Personalizing web search using long term browsing history // Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. Sydney: ACM, 2011:25-34.
  • 6张新猛,蒋盛益.基于加权二部图的个性化推荐算法[J].计算机应用,2012,32(3):654-657. 被引量:34
  • 7Liu F, Yu C, Meng W. Personalized web search by mapping user queries to categories /! Proceedings of the 1 lth International Conference on Information and Knowledge Management. New York: ACM, 2002: 558-565.
  • 8Tian X, Du X, Hu H, et al. Modeling individual cognitive structure in contextual information retrie- val. Computers & Mathematics with Applications, 2009, 57(6): 1048-1056.
  • 9Sontag D, Collins-Thompson K, Bennett P N, et al. Probabilistic models for personalizing web search // Proceedings of the Fifth ACM International Con- ference on Web Search And Data Mining. Seattle: ACM, 2012:433-442.
  • 10Iwata T, Watanabe S, Yamada T, et al. Topic tracking model for analyzing consumer purchase behavior // IJCAI. Pasadena: 2009:1427-1432.

二级参考文献157

  • 1余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献792

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部