期刊文献+

使用源语言复述知识改善统计机器翻译性能 被引量:4

Improved Statistical Machine Translation with Source Language Paraphrase
下载PDF
导出
摘要 为了缓解双语语料不足导致的翻译知识欠缺问题,提出基于复述技术的翻译框架。此框架利用第三种语言获取带有概率的复述知识表,以Lattice表示输入句子的多种复述形式,扩展解码器使之可以对Lattice形式的输入进行解码,将复述知识作为特征加入到对数线性模型的目标函数中。在保持原始翻译知识表不变的情况下,此框架不仅可以增大短语翻译表对源语言现象的覆盖率,也能够增加候选译文表现形式的多样性。在3个不同规模训练集上的对比实验结果表明,在训练语料规模最小的情况下(10 K句对),系统性能有明显提升(BLEU+1.4%);在训练语料规模最大的情况下(1 M句对),系统性能也取得一定提升(BLEU+0.32%)。 The performance of statistical machine translation (SMT) suffers from the insufficiency of parallel corpus. To solve the problem, the authors propose a paraphrase based SMT framework with three solutions: 1) acquiring paraphrase knowledge based on a third language; 2) expressing multiple paraphrases of input sentence in a lattice and modifying decoder to be able to process it; 3) integrating paraphrase knowledge as features into log- linear model. In this way, not only more expressions in source language can be covered, but also more expressions in target language can be generated as candidate translations. To verify proposed method, experimetxts are conducted on three training data sets with different sizes, and evaluate the improvement of the performance of SMT system contributed by paraphrasing. Experimental results show that the translation performance is improved significantly (BLEU+ 1.4%) when the parallel corpus is small (10 K), and a good performance (BLEU+0.32%) is also achieved when parallel corpus is large enough (1 M).
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期342-348,共7页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家国际科技合作专项(2014DFA11350) 国家自然科学基金(61370130) 北京交通大学人才基金(2011RC034)资助
关键词 复述知识 短语翻译表 特征 解码器 paraphrase phrase translation table teatures decoder
  • 相关文献

参考文献8

  • 1Du Jinhua, Jiang Jie, Way A. Facilitating translationusing source language paraphrase lattices // Procee- dings of the 2010 Conference on Empirical Mthods in Natural Language Processing. Massachusetts: Association for Computational Linguistics, 2010: 420-429.
  • 2Callison-Burch C, Koehn P, Osborne M. Improved statistical machine translation using paraphrases // Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computa- tional Linguistics. New York, 2006:17-24.
  • 3赵世奇,刘挺,李生.复述技术研究[J].软件学报,2009,20(8):2124-2137. 被引量:14
  • 4Madnani N, Dorr B J. Generating phrasal and sentential paraphrases: a survey of data-driven methods. Computational Linguistics, 2010, 36(3): 341-387.
  • 5Wu Hua, Zhou Ming. Synonymous collocation extraction using translation information // Procee- dings of the 41st Annual Meeting on Association for Computational Linguistics-Volume 1. Sapporo, 2003: 120-127.
  • 6Och F J. Minimum error rate training in statistical machine translation//Proceedings of the 41st Annual Meeting on Association for Computational Linguistics- Volume 1. Sapporo, 2003:160-167.
  • 7Koehn P, Och F J, Marcu D. Statistical phrase-based translation // Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 1. Atlanta, 2003:48-54.
  • 8Papineni K, Roukos S, Ward T, et al. BLEU: a method for automatic evaluation of machine translation // Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Philadelphia, 2002: 311-318.

二级参考文献1

共引文献13

同被引文献30

  • 1Papineni K, Roukos S, Ward T, et al. BLEU: a Method for Automatic Evaluation of Machine Transla- tion[C]//Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, 2002.311- 318.
  • 2Doddington G. Automatic Evaluation of Machine Translation Quality Using N-gram Cooccurrence Sta- tistics[C]//Proceedings of the 2nd International Con- ference on Human Language Technology Research, 2002:138-145.
  • 3Banerjee S, Lavie A. METEOR: An Automatic Met- ric for MT Evaluation with Improved Correlation with Human Judgments [C]//Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 2005.65-72.
  • 4Snover M, Dorr B, Schwartz R, et al. A Study of Translation Edit Rate with Targeted Human Annota- tion[-C]//Proceedings of the Association for Machine Translation in the Americas, 2006:223-231.
  • 5Chan Y S, Ng H T. MAXSIM. A Maximum Similari- ty Metric for Machine Translation Evaluation [C]// Proceedings of the 46th Annual Meeting of the Associ- ation for Computational Linguistics, 2008: 55-62.
  • 6Wang B, Zhao T, Yang M, et al. References Exten- sion for the Automatic Evaluation of MT by Syntactic Hybridization[C]//Proceedings of the 3rd Workshop on Synlax and Structure in Statistical Translation, 2009: 37-44.
  • 7Kauchak D, Barzilay R. Paraphrasing for automatic evaluation//Proceedings of the Main Conference on Human I.anguage Technology Conference of the North American Chapter of the Association of Computational Linguistics, 2006: 455-462.
  • 8Lavie M D A. Meteor Universal. Language Specific Translation Ewluation for Any Target Language. Proceedings of the 9th Workshop on Statistical Ma- chine Translation, 2014. 376-380.
  • 9Snover M G, Madnani N, Dorr B, et al. TER-PIus: paraphrase, semantic, and alignment enhancements to Translation Edit Rate. Machine Translation, 2009, 23(2-3) : 117-127.
  • 10Zhou L, l.in C Y, Munteanu D S, et al. ParaEval: Using Paraphrases to Evaluate Summaries Automati- cally [C ]//Proceedings of the Human Language Technology Conference of the NAACL, 2006: 447- 454.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部