期刊文献+

混合算法在瞬时脑磁源定位中应用

A Mixing Method Applied to MEG Source Localization Using Time Sliced Data
原文传递
导出
摘要 利用移动偶极子模型提出了一种基于多源粒子群同步探索和随机迭代混合的脑磁源定位算法.然后利用混合算法对3,4,5个脑磁源进行仿真实验,并与标准粒子群和随机迭代算法作比较.实验表明了该混合算法既保持较低时间成本,且在精度和稳定性上具有较大的提高. To study multiple MEG source localization using time sliced data,a new numerical scheme based on particle swarm optimization and stochastic iterative algorithm is presented.We validate the proposed algorithm against 3,4,5 sources and then compare its performance with those of particle swarm optimization and stochastic iterative algorithm.Finally,we discuss the implication of results and give the suggestion for further research.
作者 林娟
出处 《数学的实践与认识》 北大核心 2015年第6期240-246,共7页 Mathematics in Practice and Theory
基金 福建省教育厅A类科技项目(JA12353) 福建师范大学福清分校科研项目(KY2012025)
关键词 粒子群算法 脑磁定位 反问题 particle swarm optimization MEG sources localization inverse problem
  • 相关文献

参考文献19

  • 1Mosher J C, Lewis P C, Leahy R M. Multiple dipole modeling and localization from spatio-temporal MEG data[J]. IEEE Trans Biomed Eng, 1992, 39(6): 541-557.
  • 2Mosher J C, Leahy R M. Recursive MUSIC: a framework for EEG and MEG source localization[J]. IEEE Trans Biomed Eng, 1998, 45(11): 1342-1354.
  • 3Jiang C W, Ma J M, Wang B, Zhang L. Multiple signal classification based on genetic algorithm for MEG sources localization[J]. Lecture Notes in Computer Science, 2007, 4492: 1133-1139.
  • 4Jiang T Z, Luo A, Li X D, KRUGGEL F. A comparative study of global optimization approaches to MEG source localization[J]. Intern J Computer Math, 2003, 80(3): 305-324.
  • 5蒋辰伟,王斌,张立明.基于粒子群优化算法的脑磁图源定位[J].生物物理学报,2008,24(4):308-314. 被引量:2
  • 6Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem[J]. Phys Med Biol, 1987 32(1): 11-22.
  • 7Suzuki T. Parallel optimization applied to magnetoencephalography[J]. Computational and Applied Mathematics, 2005, 183(1): 177-190.
  • 8Iga T, and Suzuki T. Clustering applied to the acoustic source location[J]. Computers and Mathe- matics with Application, 2006, 52(5): 671-676.
  • 9Lin J, Yamagishi H, and Suzuki T. Development of an algorithm for MEG inverse analysis using parallel optimization and clustering techniques[J]. Japan Biomagnetism and Bioelectromagnetics Society, 2008, 21(2): 19-26.
  • 10Lin J, Yamagishi H. and Suzuki T.. The validity of clustering in MEG using formula of Biot- Savart[J]. Japan Biomagnetism and Bioelectromagnetics Society, 2010, 22(2): 37-43.

二级参考文献18

  • 1Hamalainen M, Hari R, Ilmoniemi R J, Knuutila J, Lounasmaa OV. Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rer Mod Phys, 1993,65:413-497.
  • 2Mosher JC, Lewis PS, Leahy RM. Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng, 1992,39(6):541-557.
  • 3Mosher JC, Leahy RM. Recursive MUSIC: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng, 1998,45(11):1342-1354.
  • 4Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust Appl Math, 1963, 11: 431-441.
  • 5Nelder J, Mead R. A simplex method for function minimization. Comput J, 1965,4:308-313.
  • 6Khosla D, Singh M, Don M. Spatio-temporal EEG source localization using simulated annealing. IEEE Trans Biomed Eng, 1997,44(11):1075-1091.
  • 7Chenwei J, Jieming M, Bin W, Liming Z. Multiple signal classification based on genetic algorithm for MEG sources localization. Lecture Notes in Computer Science, 2007,4492: 1133-1139.
  • 8Tianzi J, An L, Xiaodong L, KRUGGEL F. A comparative study of global optimization approaches to MEG source localization. Intern J Computer Math, 2003,80(3):305-324.
  • 9Uutela K, Hamalainen M, Salmelin R. Global optimization in the localization of neuromagnetic sources. IEEE Trans Biomed Eng, 1998,45(6):716-723.
  • 10Cuffin BN. Effects of head shape on EEG's and MEG's. IEEE Trans Biomed Eng, 1990,37(1):44-52.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部