摘要
讨论了spectral空间的基本性质,以及它与Priestley空间的关系,主要结果有:1)若X是spectral空间,其则关于patch拓扑及X上诱导序为Priestley空间;2)若(X,τ,≤)为Priestley空间,则其开上集拓扑空间是spectral的.最后给出spectral空间的谱理论.
In this paper,Some basic properties of spectral space are discussed.The relation between it and Priestley space axe investigated.The main results are:1) If X is a spectral space,then with respect to the patch topology and the order of specialization X is a Priestley;2) If(X,τ,≤) is a Priestley space,then its open upper set topology space is spectral.At last,we give the spectral theory for spectral space.
出处
《数学的实践与认识》
北大核心
2015年第6期294-299,共6页
Mathematics in Practice and Theory