期刊文献+

Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation 被引量:4

Classical and nonclassical symmetry classifications of nonlinear wave equation with dissipation
下载PDF
导出
摘要 A complete classical symmetry classification and a nonclassical symmetry classification of a class of nonlinear wave equations are given with three arbitrary parameter functions. The obtained results show that such nonlinear wave equations admit richer classical and nonclassical symmetries, leading to the conservation laws and the reduction of the wave equations. Some exact solutions of the considered wave equations for particular cases are derived. A complete classical symmetry classification and a nonclassical symmetry classification of a class of nonlinear wave equations are given with three arbitrary parameter functions. The obtained results show that such nonlinear wave equations admit richer classical and nonclassical symmetries, leading to the conservation laws and the reduction of the wave equations. Some exact solutions of the considered wave equations for particular cases are derived.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第3期365-378,共14页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(Nos.11071159 and11301259) the Shanghai Key Projects(No.12510501700) the Scientific Research of College of Inner Mongolia(No.NJZZ14053) the Natural Science Foundation of Inner Mongolia(Nos.2013MS0105and 2014MS0114)
关键词 classical symmetry nonclassical symmetry symmetry classification non-linear wave equation classical symmetry, nonclassical symmetry, symmetry classification, non-linear wave equation
  • 相关文献

参考文献3

二级参考文献22

  • 1Clarkson P A,Mansfield E L.Open problems in symmetry analysis:in geometrical study of differential equations[M]//Leslie J A,Robart T(eds).Contemporary Mathematics Series,285.Providence,RI:A M S,2001:195-205.
  • 2Bluman G W,Cole J D.The general similarity solutions of the heat equations[J].J Math Mech,1969,18:1025-1042.
  • 3Temuer C.An algorithm for the complete symmetry classification of differential equations based on Wu's method[J].J Eng Math,2010,66:181-199.
  • 4Polyanin A D,Zaitsev V F.Handbook of exact solutions for ordinary differential equations [M].2nd ed.Boca Raton:Chapman & Hall/CRC Press,2003.
  • 5Olver P J.Applications of Lie groups to differential equations[M].2nd ed.New York: Springer-Verlag,1993.
  • 6Polyanin A D,Zaitsev V F.Handbook of nonlinear partial differential equations[M]. Boca Raton,FL:Chapman & Hall/CRC Press,2004.
  • 7Arrigo D J,Hill J M,Broadbridge P.Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source[J].IMA J Appl Math,1994,52:1-24.
  • 8Grimshaw R 1979 Proc. Royal Soc. London A 368 359
  • 9Joshi N 1987 Phys. Lett. A 125 456
  • 10Zhang Y C, Yao Z Z, Zhu H Wet al 2007 Chin. Phys. Lett. 24 1173

共引文献11

同被引文献27

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部