期刊文献+

预不变凸模糊映射的一些性质 被引量:1

Some Properties of Preinvex Fuzzy Mapping
下载PDF
导出
摘要 首先利用模糊映射的二次可微性,给出了预不变凸模糊映射的一个充要条件,然后建立了预不变凸模糊映射的一个等价条件,结果为预不变凸模糊映射的判断提供了一个新的思路. A necessary and sufficient condition for preinvex fuzzy mapping is given by making use of twice differentiable fuzzy mapping, then an equivalent condition of preinvex fuzzy mapping is built. The results provide new thoughts to verify preinvexity fuzzy mapping.
作者 张成 刘先
出处 《重庆工商大学学报(自然科学版)》 2015年第3期8-11,36,共5页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 预不变凸模糊映射 二次连续可微 半正定模糊矩阵 等价条件 preinvex fuzzy mapping twice continuous differentiable fuzzy mapping semi-definite fuzzy matrix equivalent condition
  • 相关文献

参考文献9

  • 1ZADEH L. Fuzzy sets [J]. Information and Control, 1965, 8(3) :338-353.
  • 2DUBOIS D, PRADE H. Towards Fuzzy Differential Calculus-Parts 1, 2, 3[ M]. Fuzzy Sets and Systems, 1982.
  • 3GOETSCHEL R, VOXMAN W. Elementary Fuzzy Calculus [J]. Fuzzy Sets and Systems, 1986(18) :31-43.
  • 4GOETSCHEL R, VOXMAN W. Topological Properties of Fuzzy Numbers [ J ]. Fuzzy Sets and Systems, 1983 (9) : 87-99.
  • 5NANDA S, KAR K. Convex Fuzzy Mappings [ J]. Fuzzy Sets and Systems, 1992,48:129-132.
  • 6PANIGRAHI M, PANDA G, NANDA S. Convex Fuzzy Mapping with Differentiability and Its Application in Fuzzy Optimization [ J] .European Journal of Operational Research, 2008, 185:47-62.
  • 7张萍,黄虎,王早.预不变凸模糊集的一些性质[J].纯粹数学与应用数学,2006,22(3):355-359. 被引量:7
  • 8MOHAN S,NEOGY S.On Invex Sets and Preinvex Functions [ J] .Journal of Mathematical Analysis and Applications, 1995,189: 901-908.
  • 9WU Z, XU J. Generalized Convex Fuzzy Mappings and Fuzzy Variational-like Inequality [ J ]. Fuzzy Sets and System, 2009, 160 : 1590-1619.

二级参考文献7

  • 1Hanson M A.On sufficiency of the Kuhn-Tucker conditions[J].Math.Anal.Appl.,1982,80:545-550.
  • 2Ben A,Bemoaned.Wath is invexity[J].Austral Math.Soc.Ser.B,1986,28:1-9.
  • 3Martin D H.The essence of invexity[J].Optim Theory Appl.,1985,47:65-7 6.
  • 4Pine R.Invexty and generalized convexity[J].Optimization,1991,22(4):51 3-525.
  • 5Yang Xinmin,Yang X Q,Toe K L.Characterizations and of prequasi-invex Functions[J].Optima apple,2001,110(3):645-668.
  • 6Yang Xinmin,Feng Mei.Aproperly on convex fuzzy sets[J].Fuzzy Sets and Systems,2002,126:269-271.
  • 7Yang Xinmin.Some properties of convex fuzzy sets[J].Fuzzy Sets and Systems,1995,72:129-132.

共引文献6

同被引文献5

  • 1AVRIEL M, DIEWERT W E, SCHAIBLE S S, etal. Generalized concavity [ M ].New York: Penum Press, 1988.
  • 2NOOR M A, NOOR K I. Some Characterizations of Strongly Preinvex Functions]-J]. Journal of Mathematical Analysis and Applications ,2006(316) :697-706.
  • 3LIU C P. Some Characterizations and Applications on Strongly ot-preinvex and Strongly ot-invex Functions [ J ]. Journal of Industrial and Management Optimization, 2008,4 (4) : 727-738.
  • 4赵克全.预不变凸函数的一个等价条件[J].重庆师范大学学报(自然科学版),2010,27(3):6-8. 被引量:7
  • 5王海英,符祖峰,何芝.α-预不变凸函数的若干性质[J].西南大学学报(自然科学版),2015,37(3):99-105. 被引量:10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部