期刊文献+

基于CH-π相互作用的多壁碳纳米管表面POSS粒子非共价修饰研究 被引量:4

Noncovalent Surface Functionalization of Multi-walled Carbon Nanotubes with Polyhedral Oligomeric Silsesquioxane Nanoparticles Based on CH-π Interactions
原文传递
导出
摘要 首先以α-二亚胺钯(Pd-diimine)在0.1 MPa/35℃下催化乙烯和多面体低聚倍半硅氧烷(POSS)共聚,基于链"行走"机理以一步法工艺获得含有多重POSS的超支化聚乙烯共聚物(HBPE@POSS),随后分别以THF和氯仿为溶剂,在超声下利用所得HBPE@POSS对多壁碳纳米管(MWCNTs)进行表面改性.分别运用核磁共振波谱(1H-NMR)、凝胶渗透色谱(GPC)、广角X射线衍射(WAXD)和热重分析(TGA)技术对所得HBPE@POSS的结构与组成进行了表征,进一步通过紫外-可见吸收光谱(UV-Vis)、透射电子显微镜(TEM)、WAXD、傅立叶红外光谱(FTIR)和TGA技术对MWCNTs的分散浓度、形貌、聚集状态及与聚合物间的非共价作用进行了考察.结果表明,已将POSS引入超支化聚乙烯(HBPE)结构中,比例达39.0 wt%;借助超声,所得HBPE@POSS可实现MWCNTs在THF/氯仿中单根稳定分散,最高浓度达987 mg/L(THF)和511 mg/L(氯仿);利用非共价CH-π作用,可将一定比例的POSS粒子稳固地引入MWCNTs表面.基于该思路,可望在CNTs表面引入更多种类的功能无机纳米粒子,为其表面非共价无机功能化修饰提供新的方法. One-pot chain walking copolymerization of ethylene and polyhedral oligomeric silsesquioxane (POSS) monomer was first performed at 0. 1 MPa/35℃ with a Pd-diimine catalyst to synthesize hyperbranched polyethylene covalently tethered with multiple POSS nanoparticles (HBPE @ POSS). The resulting HBPE@ POSS was then used to funetionalize multi-walled carbon nanotubes (MWCNTs) under the assistance of ultrasonieation in tetrahydrofuran (THF) and chloroform, respectively. The structure and POSS portion of the HBPE @ POSS were characterized via proton nuclear magnetic resonance (^1H-NMR), gel permeation chromatography (GPC), thermogravimetric analysis (TGA) and wide-angled X-ray diffraction (WAXD) techniques, respectively. Further, the dispersibility, morphology and aggregate state of HBPE@ POSS functionalized MWCNTs, and noncovant interactions investigated through UV-Vis absorbance spectroscopy Fourier-transformed infrared (FTIR) spectroscopy and between MWCNTs and HBPE @ POSS as well, are , transmittance electron microscopy ( TEM ) , WAXD, TGA techniques,respectively. It is testified that POSS can be covalently introduced into hyperbranched polyethylene with a portion of 39.0 wt% in the HBPE@ POSS. The HBPE@ POSS is found to effectively debundle/solubilize MWCNTs both in THF and chloroform, giving stable MWCNTs solutions with concentrations up to 987 mg/L in THF and 511 mg/L in chloroform. Also,it is found that POSS of certain portion can be irreversibly adsorbed onto MWCNTs by means of the noncovalent CH-π interactions between MWCNTs and HBPE @ POSS. It is expected that more inorganic nanoparticles (INPs) can be introduced onto CNTs through this method,thus leading to a novel strategy for surface functionalization of CNTs with INPs.
出处 《高分子学报》 SCIE CAS CSCD 北大核心 2015年第4期427-436,共10页 Acta Polymerica Sinica
基金 国家自然科学基金(基金号21074117 21474091) 浙江省自然科学基金(基金号LY14B040002)资助项目
关键词 超支化聚乙烯 多面体低聚倍半硅氧烷 共聚物 多壁碳纳米管 非共价修饰 CH-π作用 Hyperbranched polyethylene, Polyhedral oligomeric silsesquioxane, Copolymer, Multi-walledcarbon nanotubes, Noncovalent functionalization, CH-π- interactions
  • 相关文献

参考文献31

  • 1Karousis N, Tagmatarchis N,Tasis D.Chem Rev,2010,110:5366-5397.
  • 2Kharisov B I,Kharissova O V,Gutierrez H L,Méndez U O.Ind Eng Chem Res,2009,48:572-590.
  • 3Kim S W,Kim T,Kim Y S,Choi H S,Lim H J,Yang S J,Park C R.Carbon,2012,50:3-33.
  • 4Tasis D,Tagmatarchis N,Bianco A,Prato M.Chem Rev,2006,106:1105-1136.
  • 5Singh P,Campidelli S,Giordani S,Bonifazi D,Bianco A,Prato M.Chem Soc Rev,2009,38:2214-2230.
  • 6Mittal V.Surface Modification of Nanotube Fillers.Weinheim:Wiley-VCH,2011.257-287.
  • 7Adeli M,Soleyman R,Beiranvand Z,Madani F.Chem Soc Rev,2013,42:5231-5256.
  • 8Sun J T,Hong C Y,Pan C Y.Polym Chem,2011,2:998-1007.
  • 9Szleifer I,Yerushalmi-Rozen R.Polymer,2005,46:7803-7818.
  • 10Liu Y T,Zhao W,Huang Z Y,Gao Y F,Xie X M,Wang X H,Ye X Y.Carbon,2006,44:1581-1616.

同被引文献95

  • 1Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev, 1998, 98(2): 637-674.
  • 2Kitov P I, Sadowska J M, Mulvey G, et ol. Shiga-like toxins are neutralized by tailored mulfivalent carbohydrate ligands. Nature, 2000, 403(6770): 669-672.
  • 3Kiessling L L, Grim J C. Glycopolymer probes of signal transduction. Chem Soc Rev, 2013, 42(10): 4476-4479.
  • 4Sharon N, Lis H. Lections as cell recognition molecules. Science, 1989, 246(4927): 227-234.
  • 5Simon Ting S R, Chert G, Stenzel M H. Synthesis of glycopolymers and their multivalent recognitions with lections. Polym Chem, 2010, 1(9): 1392-1412.
  • 6Plevin M J, Bryce D L, Boisbouvier J. Direct detection of CH/pi interactions in proteins. Nat Chem, 2010, 2(6): 466-471.
  • 7Asensio J L, Archa A, Cafiada F J, et aL Carbohydrate-aromatic interactions. Ace Chem Res, 2003, 46(4): 946-954.
  • 8Zeng X, Andrade C A S, Oliveira M D L, et al. Carbohydrate- protein interactions and their biosensing applications. Anal Bioanal Chem, 2012, 402(10): 3161-3176.
  • 9Kamiya Y, Yagi-Utsumi M, Yagi H, et 01. Structural and molecular basis of carbohydrate-protein interaction systems as potential therapeutic targets. Curr Pharm Des, 2011, 17(17): 1672-1684.
  • 10Capila I, Linhardt R J. Heparin-protein interactions. Angew Chem Int Ed, 2002, 41(3): 390-412.

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部