期刊文献+

外部绕流的Navier-Stokes方程的边界层方程和维数分裂法

Boundary layer equations and a dimensional split method for Navier-Stokes equations in exterior flow around an obstacle
下载PDF
导出
摘要 采用基于物体表面二维曲面的半测地坐标系(S-coordinate)建立了一个新的外部绕流边界层方程(boundary layer equations,BLE).BLE是一个关于物体的未知法向粘性应力张量和压力的非线性偏微分方程,其解的存在性得到了证明.此外,通过在二维流形上应用若干个2D-3C偏微分方程组来近似Navier-Stokes方程,获得了三维Navier-Stokes方程的维数分裂法.最后,对球和椭球的外部绕流问题给出了算例. New boundary layer equations (BLEs) for exterior flow around a body, are established using a semi-geodesic coordinate system (S-coordinate) based on the curved two dimensional surface of the body. BLEs are nonlinear partial differential equations on unknown normal viscous stress tensor and pressure on the surface. In addition, a dimensional split method for three dimensional Navier- Stokes equations in exterial domain around an obstacle is developed by applying several 2D-3C partial differential equations on two dimensional manifolds to approximate 3D Navier-Stokes equations. Numerical examples for the exterior flow around a spheroid and ellipsoid are presented here.
出处 《应用数学与计算数学学报》 2015年第1期1-58,共58页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金重大研究计划资助项目(91330116) 国家自然科学基金资助项目(11371288 11371289) 国家重点基础研究发展计划资助项目(2011CB706505) 西安交大赛尔透平机械有限公司的资助
关键词 边界层方程 维数分裂法 Navier—Stokes方程 二维流形 boundary layer equations dimensional split method Navier-Stokesequations two dimensional manifold
  • 相关文献

参考文献3

二级参考文献20

  • 1LI Kaitai ZHANG Wenling HUANG Aixiang.An asymptotic analysis method for the linearly shell theory[J].Science China Mathematics,2006,49(8):1009-1047. 被引量:4
  • 2DING Xiaqi(Institute of Applied Mathematics, Academia Sinica,Beijing 100080, China)LI Caizhong(Department of Applied Mathematics, Sichuan Union University,Chengdu 610065, China)HUANG Feimin(Institute of Applied Mathematics, Academia Sinica,Beijing 100080,.NON-CLASSICAL GENERALIZED SOLUTIONS FOR SOME HYPERBOLIC SYSTEMS[J].Systems Science and Mathematical Sciences,1999,12(S1):1-13. 被引量:1
  • 3[1]Li Kaitai, Huang Aixiang. Mathematical aspect of the stream-function equations of compressible turbomachinery flows and their finite element approximation using optimal control[J]. Comp Meth Appl Mech and Eng 41, 1983,175-194.
  • 4[2]李开泰, 黄艾香.张量分析极其应用 [M].西安交通大学出版社, 1984.
  • 5[3]David GEbin, Jerrold Marsden. Groups of diffeomorphism and the motion of an incompressible fluid[J].Ann of Math(2),1970,92:102-163.
  • 6[4]Hale LK, Ruagel G. Reaction diffusion equations on thin domains[J]. J Math Pures Appl, 1992,71(a):33-95.
  • 7[5]Hale LK, Ruagel G. A dampled hyperbolic equations on thin domains[J]. Tran Amer Math Soc,1992,329(b):185-219.
  • 8[6]Raugel G, Sell G. Navier-Stokes equations on thin 3D domains.I:Global attractors and global regularity of solutions[J]. J Amer Math Society, 1993,6:503-568.
  • 9[7]Raugel G, Sell G. Navier-Stokes equations on thin 3D domains.Ⅱ: Global regularity of spatially periodic conditions[M]. New York and London, College de France Proceedings,Pitman Res. Notes Math Ser,Pitman,1992.
  • 10[8]Moise I, T emamR, Ziane M. Asymptotic analysis of the Navier-Stokes equations in thin domain[J]. Topoi Methods Nonlinear Anal, 1997,10:249-282.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部