期刊文献+

考虑Cowper-Symonds黏塑性材料本构的向量式有限元三角形薄壳单元研究 被引量:7

Study on triangular thin-shell element of vector form intrinsic finite element considering Cowper-Symonds viscoplastic constitutive model
原文传递
导出
摘要 薄壳结构的力学行为分析往往涉及显著的材料非线性效应,对爆炸、冲击等高速动力问题还需进一步考虑高应变率效应的影响。基于此,将可同时考虑应变硬化和应变率效应的Cowper-Symonds黏塑性材料本构模型(简称C-S模型)引入向量式有限元三角形薄壳单元,以实现金属薄壳结构的动力非线性分析。推导了C-S模型的弹塑性增量分析步骤,并将其作为单独的计算分析模块引入薄壳结构的向量式有限元分析程序,适用于线弹性、理想弹塑性、双线性弹塑性和率相关C-S模型等4种材料模型条件下的薄壳结构分析。算例分析表明,所编制的向量式有限元程序可以有效实现非线性材料情况下薄壳结构的静、动力分析以及爆炸冲击作用下的非线性动力响应分析,验证了文中C-S模型理论推导和程序的正确、可靠。 Analysis of complex behavior for thin-shell structures often involves significant effect of material nonlinearity. For high-speed dynamic problems such as explosion and impact, the effect of high strain-rate should also be considered. The Cowper-Symonds viscoplastic constitutive model (C-S model) considering both strain hardening effect and strain-rate effect is introduced into the triangular thin-shell element of vector form intrinsic finte element (VFIFE) , so that the dynamic nonlinear analysis of thin metal shells can be realized. The elasto-plastic incremental analysis steps of the C-S model are derived in detail, and the C-S model is introduced into the VFIFE program as a separate calculation module. The program is applicable for the analysis of thin-shell structures with four material models including linear elastic, perfect elasto-plastic, bilinear elasto-plastic and rate-dependent C-S models. Results from numerical examples show that, static analysis, dynamic analysis and nonlinear dynamic analysis under explosion loading for thin-shell structures under the condition of nonlinear material can all be well performed by the developed program, verifying the correctness and reliability of the theoretical derivation and the computer program.
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2014年第4期71-77,共7页 Journal of Building Structures
基金 国家自然科学基金项目(51378459) 浙江省重点科技创新团队项目(2010R50034)
关键词 薄壳结构 向量式有限元 三角形薄壳单元 非线性材料 应变硬化 应变率效应 thin-shell structure vector form intrinsic finite element triangle thin-shell element nonlinear material strain hardening strain-rate effect
  • 相关文献

参考文献10

  • 1Owen D R J, Hinton E. Finite element in plasticity: theory and practice [ M ]. Swansea: Pineridhe Press, 1980 : 215-318.
  • 2Drucker D C. A more fundamental approach to plastic stress-strain relations [ C ]// Proceedings of the 1st U.S. National Congress of Applied Mechanics. NewYork: American Society of Mechanical Engineers, 1951 : 487-491.
  • 3伊留辛AA.塑性[M].王振常,译.北京:中国建筑工业出版社,1960:663-669.
  • 4李永池.材料的塑性行为及其波动和层裂效应[C]//塑性力学和地球动力学文集.北京:北京大学出版社,1990:132-139.
  • 5Cowper G R, Symonds P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [ R ]. Report No. 28. Providence : Division of Applied Mathematics, Brown University, 1957.
  • 6Johnson G R, Cook W H. A constitutive model and data formetals subjected to large strains high strain rait and high temperatures [ C ]//Proceedings of the 7th International Symposium on Ballistics. The Hugue, Netherlands: International Ballistics Committee, 1983, 21 : 541-547.
  • 7李永池,王红五,江松青,朱林法,张昭宇.含损伤材料的热粘塑性本构关系和柱壳破裂研究[J].爆炸与冲击,2001,21(2):105-110. 被引量:5
  • 8王震,赵阳,胡可.基于向量式有限元的三角形薄壳单元研究[J].建筑结构学报,2014,35(4):64-70. 被引量:3
  • 9Chen H, Liew J Y. Explosion and fire analysis of steel frames using mixed element approach [ J ]. Journal of Engineering Mechanics, 2005, 131(6): 606-616.
  • 10李忠献,刘志侠,Hao Hong.爆炸荷载作用下钢结构的动力反应分析[J].建筑结构,2006,36(S1):729-732. 被引量:5

二级参考文献35

  • 1封加坡.金属动态延性破坏损伤函数模型[M].北京:北京理工大学,1992..
  • 2勒迈特J 倪金刚等(译).损伤力学教程[M].北京:科学出版社,1996..
  • 3陈大年 王德生 等.柱壳的高速膨胀断裂[J].爆炸与冲击,1987,7(1):27-32.
  • 4倪金刚(译),损伤力学教程,1996年
  • 5封加坡,学位论文,1992年
  • 6陈大年,爆炸与冲击,1987年,7卷,1期,27页
  • 7Timoshenko S, Woinowsky-Krieger S. Theory of plates and shells[ M]. 2nd ed. New York: McGraw-Hill Book Company, Inc, 1959: 459-612.
  • 8翁志远.梁板壳静动力学译文集:I[M].上海:同济大学出版社,1986:1-90.
  • 9Green B E, Strome D R, Weikel R C. Apphcation of the stiffness method to the analysis of shell structures [ C ]// Procedures on Aviation Conference. Los Angeles: American Society of Mechanical Engineers, 1961 : 1-9.
  • 10Zienkiewicz O C. The finite element method in engineering science [ M ]. 2nd ed. London : McGraw- Hill, 1971 : 400-521.

共引文献10

同被引文献77

引证文献7

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部