期刊文献+

基于等级划分狼群算法的三维传感器优化布置方法研究 被引量:10

Hierarchic wolf algorithm for optimal triaxial sensor placement
原文传递
导出
摘要 为解决传感器优化布置中的信息冗余问题,提出了一种信息冗余度函数,将其与三维模态置信准则(TMAC)相结合,建立了一种既能保证模态振型可观性又能保证模态振型可区分性的传感器三维模态置信准则。为提高算法的求解效率,提出了一种等级划分狼群算法,采用双重编码的方式,克服了原狼群算法只能求解连续变量优化的问题;通过人工均匀法进行狼群数据的初始化,以保证初始数据的均匀性;并采用等级划分方法,避免群体内狼个体与头狼等级相似,增加狼群的多样性,提高算法的搜索效率。以一个桥梁基准模型为数值算例,进行参数敏感性分析以及三维传感器优化布置方案的选择。结果表明:等级划分狼群算法的搜索能力较原狼群算法有了大幅提高,能较好地解决传感器优化布置问题。 In order to solve the information redundancy problem in the optimal sensor placement (0SP), the information redundancy function fl(R) was proposed, and then the triaxial modal assurance criteria considering the redundancy of information was established by combining g(R) with the triaxial modal assurance criterion (TMAC), which can ensure both the observability and discriminability of the modal shape. Furthermore, to improve the solution efficiency, a novel hierarchic wolf algorithm (HWA) was put forward. First, the dual-structure coding method was used to overcome that the original wolf algorithm (VIA) can only solve the optimization of continuous variables, and the artificial uniform distribution method was raised for the initialization of the wolf population to ensure the uniformity of the initial data. Then, the hierarchic method was adopted to avoid that any individual wolf has the similar grade with the wolf king, which may enhance the diversity of the wolf population and improve the searching efficiency of the algorithm. Finally, the parametric sensitivity analysis and the OSP selection were performed on the benchmark of Highway Bridge. The results indicate that the searching ability of the HWA greatly increases compared with the original WA, which can better solve the OSP problem.
出处 《建筑结构学报》 EI CAS CSCD 北大核心 2014年第4期223-229,共7页 Journal of Building Structures
基金 国家自然科学基金委创新研究群体基金(51121005) 国家优秀青年科学基金(51222806) 国家自然科学基金面上项目(51178083)
关键词 传感器优化布置 模态置信准则 等级划分 狼群算法 双重编码 optimal sensor placement modal assurance criterion hierarchic wolf algorithm dual-structure coding method
  • 相关文献

参考文献9

  • 1伊廷华,李宏男,顾明.结构健康监测中基于多重优化策略的传感器布置方法[J].建筑结构学报,2011,32(12):217-223. 被引量:29
  • 2Stephan C. Sensor placement for modal identification [ J]. Mechanical Systems and Signal Processing,2012, 27:461-470.
  • 3He L J, Lian J J, Ma B, et al. Optimal multiaxial sensor placement for modal identification of large structures [J]. Structural Control and Health Monitoring, 2014, 21(1) :61-79.
  • 4Kammer D C, Michael L Tinker. Optimal placement of triaxial accelerometers for modal vibration tests [ J ]. Mechanical Systems and Signal Processing, 2004, 18 (1) : 29-41.
  • 5江祥林,程高.基于EfI法的桥梁模态测试中传感器优化布置[J].桥梁建设,2012,42(2):59-65. 被引量:6
  • 6Ngatchou P N, Fox W L J, EL-sharkawi M A.Distributed sensor placement with sequential particle swarm optimization [ C ]/! Proceedings of 2005 IEEE Swarm Intelligence Symposium. New York : IEEE, 2005 : 385-388.
  • 7黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005,22(1):113-117. 被引量:25
  • 8Yi T H, Li H N, Zhang X D. Sensor placement on Canton Tower for health monitoring using asynchronous- climb monkey algorithm E J 1- Smart Materials and Structure,2012,21 (12) : 1-12.
  • 9Catbas N, Caicedo J M, Dyke S J. Development of a benchmark problem for bridge health monitoring [ C ]// Proceedings of the International Conference on Bridge Maintenance, Safety and Management. Porto, Portugal : [ s. n. ] , 2006 : 1-3.

二级参考文献30

  • 1袁爱民,戴航,李延和.EI法和MAC法在模态试验传感器优化布置中应用比较[J].工业建筑,2008,38(z1):344-347. 被引量:10
  • 2刘娟,黄维平.传感器优化配置的修正逐步累积法[J].青岛海洋大学学报(自然科学版),2003,33(3):476-482. 被引量:20
  • 3刘娟,黄维平.二重结构编码遗传算法在传感器配置中的应用[J].振动.测试与诊断,2004,24(4):281-284. 被引量:14
  • 4王山山,任青文.结构模态参数测试的传感器优化布置研究[J].动力学与控制学报,2005,3(1):67-71. 被引量:19
  • 5Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures [ J ]. Journal of Guidance, Control and Dynamics, 1991, 14(2) : 251-259.
  • 6Carne T G, Dohmann C R. A modal test design strategy for modal correlation [ C l// Proceedings of the 13th International Modal Analysis Conference. New York: Union College, Schenectady, 1995: 927-933.
  • 7Ni Y Q, Xia Y, Liao W Y, et al. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower [J]. Structural Control and Health Monitoring, 2009, 16( 1 ) : 73-98.
  • 8Friswell M I, Garvey S D, Penny J E T. Model reduction using dynamic and iterated IRS techniques [J]. Journal of Sound and Vibration, 1995, 186(2) : 311-323.
  • 9John B Kosmatka and James M Ricles. Damage detection in structures by modal vibration characterization [J]. Journal of Structural Engineering, 1999, 125(12): 1384-1392.
  • 10A Ghobarah, H Abou-Elfath and Ashraf Biddah. Response-based damage assessment of structures [J]. Earthquake Engineering & Structural Dynamics, 1999, 28(1): 79-104.

共引文献55

同被引文献127

引证文献10

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部