期刊文献+

基于结构和适应度的社区发现 被引量:2

Community detection based on structure and fitness
下载PDF
导出
摘要 复杂社会网络无处不在,对复杂社会网络进行社区发现越来越被人们重视.基于局部结构的社区发现可以在不用了解全局的情况下对某些节点进行划分;社会网络的社区适应度特性可以找出不同适应度下的社区结构.基于局部结构以及社区适应度的网络属性,提出一种新的社区发现算法.通过实验比较,算法能较好、较快的发现社区结构,在人工网络以及真实社会网络均取得较之已有方法更好的效果. Many systems can be described as complex social networks ,and increasing attention has been paid to the detection of social communities out of complex social networks .Structured-based community detection can be achieved locally without knowledge of the overall situation . The community fitness characteristics of social networks can help to identify community structures at different fitnesses .A new algorithm based on structure and fitness was proposed to test large generated networks and real networks . Experiments had show n its better efficiency and higher accuracy .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第7期563-569,共7页 JUSTC
基金 中央高校科研业务费专项基金(2014JBM029)资助
关键词 社区发现 结构社区 社区适应度 复杂社会网络 局部社区 community detection community structure community fitness large networks local community
  • 相关文献

参考文献18

  • 1Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
  • 2Li Y D, Liu J, Liu C L. A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks [J]. Soft Computing, 2014, 18(2): 329-348.
  • 3Bu Z, Zhang C C, Xia Z v, et al. A fast parallel modularity optimization algorithm (FPMQA) for community detection in online social network [J]. Knowledge-Based Systems, 2013, 50: 246-259.
  • 4Shi C, Cai Y N, Fu D, et al. A link clustering based overlapping community detection algorithm [J]. Data &. Knowledge Engineering, 2013, 87: 394-404.
  • 5Li K, Pang Y. A unified community detection algorithm in complex network [J]. Neurocomputing, 2014, 1300): 36-43.
  • 6Bennetta L, Liub S S, Papageorgioub L G, et al. A mathematical programming approach to community structure detection in complex networks [C]/ / Proceedings of the 22nd European Symposium on Computer Aided Process Engineering. London, UK: Elsevier, 2012: 1387-1391.
  • 7Girvan M, Newman M E 1. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821- 7826.
  • 8Fortunato S. Community detection in graphs [J]. Physics Reports, 2010, 486(3): 75-174.
  • 9Wu F, Huberman B A. Finding communities in linear time: A physics approach[J]. The European Physical Journal B, 2004, 38(2): 331-338.
  • 10Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133(1-5).

同被引文献4

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部