期刊文献+

一种新型的云任务调度算法研究 被引量:7

Research of a novel cloud task scheduling algorithm
下载PDF
导出
摘要 云计算具有弹性、保证服务质量和按需的资源配置模型等特征,通常用于处理大批量的计算任务,因此任务调度策略对资源使用效率起着至关重要的作用.考虑到任务的数量和到达服务器的时间不确定性,并且用户对任务的执行往往有一定的期望(如任务优先级、执行时间等),如何合理地分配计算资源,最大程度满足用户的服务质量需求是一个值得研究的问题.为此,提出了一种新型的云环境下QoS-aware服务质量感知的任务调度算法(QTS),该算法结合贪心算法的思想,并加入了任务完成满意度模型作为任务调度的评价依据.通过扩展CloudSim仿真平台进行实验,将QTS与RR调度、Max-Min和Min-Min调度比较,结果表明,QTS是一种有效的任务调度算法. With its flexibility , guaranteed quality of service and on-demand features such as resource allocation model , cloud computing is often used to handle large computing tasks , so efficient task scheduling strategies of cloud computing play a vital role .Given the uncertainty in the number of tasks and the time of arrival at the server ,and the fact that ,users tend to have certain expectations (such as task priority ,execution time ,etc .) for the implementation of the tasks ,reasonable allocation of computing resources for task scheduling to satisfy users'QoS requirements is of great importance .A novel QoS-aware task scheduling mechanism (QTS) was proposed ,this scheduling mechanism can best meet the user's QoS requirements .By comparing QTS with RR , Max-Min and Min-Min scheduling policies by CloudSim simulation ,it was found that QTS is a more effective task scheduling mechanism .
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2014年第7期590-598,共9页 JUSTC
基金 中国高技术研究发展(863)计划(2008505611) 江苏省水利科技项目(2013025) 河海大学中央高校基本科研项目(2009B21614)资助
关键词 云计算 任务调度 服务质量感知 CloudSim cloud computing task scheduling QoS-aware CloudSim
  • 相关文献

参考文献18

  • 1Wang L Z, Ranjan R, Chen J J et al. Cloud Computing: Methodology, Systems And Applications [M]. Boca Raton: CRC Press, 2012.
  • 2Liu G, Li J, Xu J C. An improved Min-Min algorithm in cloud computing [C]/ / Proceedings of the 2012 International Conference of Modern Computer Science and Applications. Berlin, Germany: Springer, 2013: 47-52.
  • 3Guo L Z, Zhao S G, Shen S G, et al. Task scheduling optimization in cloud computing based on heuristic algorithm [J]. Journal of Networks, 2012, 7(3): 547- 553.
  • 4Li K, Xu G C, Zhao G Yu, et aL Cloud task scheduling based on load balancing ant colony optimization [C]/ / Sixth Annual ChinaGrid Conference. Dalian , China: IEEE Press, 2011: 3-9.
  • 5Cui Y F, Li X M, Dong K W, et al. Cloud computing resource scheduling method research based on improved genetic algorithm [J]. Advanced Materials Research, 2011,271: 552-557.
  • 6Sindhu S, Mukherjee S. Efficient task scheduling algorithms for cloud computing environment [C]/ / International Conference on High Performance Architecture and Grid Computing. Chandigard, India: Springer, 2011: 79-83.
  • 7Wang L Z. von Laszewski G. Kunze M. et al. Schedule distributed virtual machines in a service oriented environment [C]/ / Proceedings of the 24th IEEE International Conference on Advanced Information Networking and Applications. Perth. Australia: IEEE Press. 2010: 230-236.
  • 8Fang Y Q. Wang F. Ge J W. A task scheduling algorithm based on load balancing in cloud computing [C]/ / International Conference on Web Information Systems and Mining. Sanya China: Springer 2010. 6318: 271-277.
  • 9Wang J p, Zhu Y L, Feng H Y. A multi-task scheduling method based on ant colony algorithm [J]. Advances in information Sciences and Service Sciences. 2012, 4(11): 185-192.
  • 10Rahman M M, Thulasiram R, Graham P. Differential time-shared virtual machine multiplexing for handling QoS variation in clouds [C]/ /Proceedings of the 1st ACM Multimedia International Workshop on CloudBased Multimedia Applications and Services for Ehealth. N ara , Japan: ACM Press, 2012: 3-8.

二级参考文献55

  • 1林剑柠,吴慧中.基于遗传算法的网格资源调度算法[J].计算机研究与发展,2004,41(12):2195-2199. 被引量:70
  • 2罗红,慕德俊,邓智群,王晓东.网格计算中任务调度研究综述[J].计算机应用研究,2005,22(5):16-19. 被引量:61
  • 3张凤梅,洪运国.基于多机调度问题的动态规划算法[J].计算机技术与发展,2006,16(3):61-62. 被引量:1
  • 4Sims K. IBM introduces ready-to-use cloud computing collaboration services get clients started with cloud computing. 2007. http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
  • 5Boss G, Malladi P, Quan D, Legregni L, Hall H. Cloud computing. IBM White Paper, 2007. http://download.boulder.ibm.com/ ibmdl/pub/software/dw/wes/hipods/Cloud_computing_wp_final_8Oct.pdf
  • 6Zhang YX, Zhou YZ. 4VP+: A novel meta OS approach for streaming programs in ubiquitous computing. In: Proc. of IEEE the 21st Int'l Conf. on Advanced Information Networking and Applications (AINA 2007). Los Alamitos: IEEE Computer Society, 2007. 394-403.
  • 7Zhang YX, Zhou YZ. Transparent Computing: A new paradigm for pervasive computing. In: Ma JH, Jin H, Yang LT, Tsai JJP, eds. Proc. of the 3rd Int'l Conf. on Ubiquitous Intelligence and Computing (UIC 2006). Berlin, Heidelberg: Springer-Verlag, 2006. 1-11.
  • 8Barroso LA, Dean J, Holzle U. Web search for a planet: The Google cluster architecture. IEEE Micro, 2003,23(2):22-28.
  • 9Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks, 1998,30(1-7): 107-117.
  • 10Ghemawat S, Gobioff H, Leung ST. The Google file system. In: Proc. of the 19th ACM Symp. on Operating Systems Principles. New York: ACM Press, 2003.29-43.

共引文献1397

同被引文献31

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部