摘要
针对常规比例积分微分(proportion-integral-derivative,PID)控制存在精度不高,在线自适应差的缺点,提出了一种在线PID-TS模糊神经网络复合控制方法.该方法利用TS模糊神经网络的自学习能力提高溶解氧的控制精度,并通过构造的性能协调因子在线调整两者权重.将提出的控制方法应用于国际基准仿真平台.结果表明:所提方法能有效控制污水中的溶解氧参数,与常规PID和BP(back-propagation)神经网络控制器相比,该方法具有更优的动态性能.
Because the conventional proportion-integral-derivative (PID) algorithm has the shortcomings of low accuracy and poor adaptability, a composite method, which includes the TS fuzzy neural network (TS-FNN) and PID controller, is proposed. This control strategy can improve the accuracy of dissolved oxygen (DO) concentration by the self-learning ability of TS-FNN. Meanwhile, the parameters of the controller can be adjusted on-line by constructing performance coordination factor. Then, this method is tested based on the international benchmark simulation platform. Results show that the proposed method can achieve better dynamic performance, compared with the conventional back-propagation (BP) controller and PID controller.
出处
《北京工业大学学报》
CAS
CSCD
北大核心
2014年第9期1302-1307,共6页
Journal of Beijing University of Technology
基金
国家自然科学基金资助项目(61034008)
北京市自然科学基金资助项目(4122006)
关键词
溶解氧
复合控制
TS模糊神经网络
性能协调
dissolved oxygen
composite control
TS fuzzy neural network
performance coordination