摘要
提出一种基于高斯混合模型和快速区域置信度传播的非同态块匹配方法,实现对模糊图像的多尺度自适应分割.根据局部对比度变化信息进行变邻域搜索,通过贝叶斯估计方式估计模糊图像边缘能量特征,构建图像区域特征子图模型,实现图像多尺度分割算法改进.仿真结果表明,该算法能有效提高模糊图像的分割质量,缩短分割时间,图像分割品质和稳定性优于传统算法,具有较好的应用前景.
A non homomorphic block matching method is proposed based on Gauss mixture model and fast area belief propagation.The segmentation of multi scale adaptive fuzzy image is achieved,variable neighborhood search is taken based on the local contrast information changes,Bias method is used to estimate the fuzzy image edge energy characteristic,image region feature sub graph model is constructed,improved image segmentation algorithm of multi scale is obtained.The simulation results show that the algorithm can effectively improve the fuzzy image segmentation quality,shorten the time of segmentation,quality and stability is better than the traditional algorithm.It has better application prospect.
出处
《微电子学与计算机》
CSCD
北大核心
2014年第12期152-156,160,共6页
Microelectronics & Computer
基金
2011年教育部人文社会科学研究青年基金项目“融合跨媒体检索的数字图书馆个性化信息推送服务研究”(11YJC870012)
2012年教育部人文社会科学研究青年基金项目“基于多层语义推理的数字图书馆多媒体信息检索模型研究”(12YJCZH274)
关键词
块匹配
模糊图像
多尺度分割
block matching
fuzzy image
multiscale segmentation