期刊文献+

像素级数字化紫外焦平面读出电路的研究 被引量:2

Research on Pixel Level Digital Read-out Integrated Circuits for Ultraviolet Focal Plane Arrays
下载PDF
导出
摘要 为提高紫外焦平面组件成像质量,提出了可用于紫外焦平面的像素级数字化读出电路结构。针对紫外信号微弱及焦平面探测器像素面积小的特点,设计了基于电容反馈跨阻放大器(Capacitive Trans-Impedance Amplifier,CTIA)结构、模数转换器和锁存器的紫外焦平面像素级模数转换读出电路,并给出了实现像素内模数转换的工作原理。详细讨论了像素内模数转换的实现方法,各模块的设计要求及其具体实现,并基于0.35μm DP4M CMOS工艺设计制造了面阵规模128×128、像素单元面积50μm×50μm的读出电路芯片。电路性能测试与成像实验表明:电路的精度达到1mV以下,有效位数达到11位,实现了紫外焦平面读出电路的低噪声数字化输出。 In order to improve the imaging duality of ultraviolet focal plane arrays, the structure of digital read-out circuits for ultraviolet focal plane arrays is presented. For the ultraviolet weak signal characteristics and small pixel area of focal plane arrays, the pixel level digital read-out circuits for ultraviolet focal plane arrays are proposed, which are based on the capacitive trans-impedance amplifier circuit, an analog to digital converter and a latch. The working principle of the designed analog to digital converter is proposed. Design requirements and realization of each module are discussed in detail. The 128× 128 pixel read-out circuits with 50 μm ×50 μm pixel area are designed and fabricated in a 0. 35 μm four metal double poly CMOS process. A test system is set up for the performance test of the proposed circuits and imaging experiments. The experimental results show that the circuits have an accuracy of less than 1 mV and 11 effective bits. The proposed circuits realize the low-noise digital output of read-out circuits for ultraviolet focal plane arrays.
出处 《半导体光电》 CAS CSCD 北大核心 2014年第5期768-772,806,共6页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61204134)
关键词 紫外成像 片上数字化 像素级模数转换 探测器 ultra-violet imagery on-chip digitalization pixel level analog to digital convert detector
  • 相关文献

参考文献3

二级参考文献16

  • 1RAZEGHI M,ROGALSKI A.Semiconductor ultraviolet detectors[J].Journal of Applied Physics,1996,79(10):7433-7473.
  • 2PANKOVE J I.GaN:from fundamentals to applications[J].Mater Sci Eng,1999,B61-62:305-309.
  • 3PEARTON S J,ZOLPER J C,SHUL R J,et al.GaN:processing,defects,and devices[J].Journal of Applied Physics,1999,86 (1):1-78.
  • 4LIU Q Z,LAU S S.A review of the metal-GaN contact technology[J].Solid-State Electron,1998,42(5):677-691.
  • 5MUNOZ E,MONROY E,PAU J L,et al.(Al,Ga)N ultraviolet photodetectors and applications[J].Phys Stat Sol (a),2000,180:293-301.
  • 6DAVIS R F,EINFELDT S,PREBLE E A,et al.Gallium nitride and related materials:challenges in materials processing[J].Acta Materialia,2003,51 (19):5961-5979.
  • 7BIYIKLI N,KARTALOGLU T,AYTUR O,et al.High-performance solar-blind AlGaN Schottky photodiodes[J].MRS Internet J Nitride Semicond Res,2003,8(2):1-4.
  • 8BROWN J D,YU Z H,MATTEWS J,et al.Visible-blind UV digital camera based on a 32 ×32 array of GaN/AlGaN p-i-n photodiodes[J].MRS Internet J Nitride Semicond Res,1999,4(9):1-5.
  • 9BROWN J D,BONEY J,MATTEWS Let al.UV-specific(320-365 nm)digital camera based on 128×128 focal plance array of GaN/AlGaN p-i-n photodiodes[J].MRS Internet J Nitride Semicond Res,2000,5(6):1-4.
  • 10MCCLINTOCK R,MAYES K,YANSAN A,et al.320×256 solarblind focal plane arrays based on AlxGa1-xN[J].Appl Phys Lett,2005,86(1):011117.

共引文献46

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部