摘要
提出了一种基于距离相似性K-means的红外图像聚类算法。该算法对通过Isomap算法降维后的空间点,进一步进行聚类;算法中引入了密度因素,通过距离相似性的差异进一步排除孤立点和选取初始聚类中心,使数据内部的紧凑性得到加强。经过实验证明,改进后的方法比原方法更有效,时间复杂度也大幅度降低。
An infrared image clustering algorithm based on K-means distance similarity was proposed. Firstly, it re-clusters the space points which are gained by Isomap dimension reduction algorithm. Secondly, by introducing density factor, some isolated points can be further eliminated and the initial clustering center can be selected by the difference of distance similarity, making the compactness within the data be strengthened. The experimental results show that the improved method is more effective and can also reduce the time complexity.
出处
《半导体光电》
CAS
CSCD
北大核心
2014年第5期904-907,共4页
Semiconductor Optoelectronics
基金
重庆市自然科学基金项目(CSTC 2013JCYJA0488
CSTC 2011jjA1026)