期刊文献+

基于距离相似性K-means的红外图像聚类算法研究

A K-means Clustering Algorithm Applied to the Infrared Images Based on Distance Similarity
下载PDF
导出
摘要 提出了一种基于距离相似性K-means的红外图像聚类算法。该算法对通过Isomap算法降维后的空间点,进一步进行聚类;算法中引入了密度因素,通过距离相似性的差异进一步排除孤立点和选取初始聚类中心,使数据内部的紧凑性得到加强。经过实验证明,改进后的方法比原方法更有效,时间复杂度也大幅度降低。 An infrared image clustering algorithm based on K-means distance similarity was proposed. Firstly, it re-clusters the space points which are gained by Isomap dimension reduction algorithm. Secondly, by introducing density factor, some isolated points can be further eliminated and the initial clustering center can be selected by the difference of distance similarity, making the compactness within the data be strengthened. The experimental results show that the improved method is more effective and can also reduce the time complexity.
作者 王东 王理想
出处 《半导体光电》 CAS CSCD 北大核心 2014年第5期904-907,共4页 Semiconductor Optoelectronics
基金 重庆市自然科学基金项目(CSTC 2013JCYJA0488 CSTC 2011jjA1026)
关键词 聚类算法 距离相似性 K-MEANS 数据挖掘 clustering algorithm distance similarity K-means data mining
  • 相关文献

参考文献12

  • 1Jain A K.Data clustering: 50 years beyond K-means[J].Pattern Recognition Lett.,2010,31(8): 651-666.
  • 2Kalogeratos A,Likas A.Document clustering using synthetic cluster prototypes[J].Data & Knowledge Engineering,2011,70(3): 284-306.
  • 3Dhillon I S,Guan Y,Kogan J.Iterative clustering of high dimensional text data augmented by local search[C]//IEEE on ICDM Conference,2002: 131-138.
  • 4Jiang J Y,Liou R J,Lee S J.A fuzzy self-constructing feature clustering algorithm for text classification[J].IEEE Trans.on Knowledge and Data Engineering,2011,23(3): 335-349.
  • 5Nadif M.Co-Clustering[M].John Wiley & Sons,2013.
  • 6连凤娜,吴锦林,唐琦.一种改进的K-means聚类算法[J].电脑与信息技术,2008,16(1):38-40. 被引量:23
  • 7Kaufan L,Rousseeuw P.Finding groups in data: an introduction to cluster analysis[M].New York: John Wiley &Sons,1990.
  • 8王天真,刘萍,汤天浩,黄洪琼,张艳.一种基于k-means聚类的航运信息孤立点分析算法[J].上海海事大学学报,2011,32(3):54-57. 被引量:5
  • 9仇新玲.K-均值聚类算法改进及应用[M].北京: 北京邮电大学出版社,2012.
  • 10徐义峰,陈春明,徐云青.一种改进的k-均值聚类算法[J].计算机应用与软件,2008,25(3):275-277. 被引量:41

二级参考文献19

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:48
  • 3宓为建,徐子奇,刘园.大型港机结构应力峰值与小车位置关联规则的数据挖掘[J].上海海事大学学报,2006,27(3):42-46. 被引量:4
  • 4WANG H, ZHANG X D. Spatial clustering and outlier analysis for the regionalization of maize cultivation in China [ J ]. WSEAS Transaction on Inform Sci & Applications, 2010, 7 (6) : 850-859.
  • 5ZHU Q S, YANG P. Spectral clustering algorithm with application to outlier detection[J]. J Inform & Comput Sci, 2009, 6(2) : 707-713.
  • 6HYUNJUNG L, YONGDUEK S. Removing outliers by minimizing the sum of infeasibilities [ J ]. Image & Vision Computing, 2010, 28 (6) : 881- 889.
  • 7QIN B J, GU Z J. Registration of images with outliers using joint saliency map [J]. IEEE Signal Processing letters, 2010, 17( 1 ) : 91-94.
  • 8Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158.
  • 9Kaufan L, Rousseeuw Pj. Finding Groups in Data: an Introduction to Cluster Analysis[M]. New York: John Wiley & Sons, 1990.
  • 10Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databased[C]. In Haas LM, Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Sesttle: ACM Press, 1998:73-84.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部