期刊文献+

压电结构系统机电耦合的强化与多阶共振抑制 被引量:3

Enhancement of electromechanical coupling for piezoelectric system and suppression of multimode vibration
下载PDF
导出
摘要 提高压电系统的机电耦合程度可以提高压电分支电路对于结构机械振动的抑制效果.提出了一种可同时提高压电系统多阶模态机电耦合程度、进而实现对系统多阶共振进行控制的方法.首先通过对压电悬臂梁模型的理论研究揭示了将压电片的电极离散、并以不同方式连接可以导致系统的机电耦合程度发生改变的现象.在此基础上导出可刻划此现象的模态机电耦合函数;提出通过对模态机电耦合函数的优化寻求压电片电极的最佳离散方式和最佳连接方式,以获得对应某一模态的最大机电耦合函数值.为了对多阶共振抑制,提出引入选通电路,通过对含有选通电路的模态机电耦合函数的参数优化实现同时提高压电系统多模态机电耦合程度、进而抑制多阶共振的方法.结合数值实例对此方法进行说明. Enhancing the electromechanical coupling of a piezoelectric system is an effective way to suppress the vibration of the system by the piezoelectric shunt technique.A method was proposed which can increase the multiple-mode electromechanical coupling for a piezoelectric system.From the research of piezoelectric cantilever beam model,it was found that the electromechanical coupling depends on the position of the electrode on the piezoelectric materials,as well as the way to connect to the shunted circuits.The modal electromechanical coupling function was proposed to describe this phenomenon.For the sake to get one modal coupling maximum,the best position of the electrode and the best connection ways can be obtained through optimizing the modal electromechanical coupling function.The ‘current flowing’circuits was proposed to make multiple-mode electromechanical coupling enhancement possible and to realize multimode vibration suppression.This method was verified through numerical examples.
作者 李琳 刘学
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第8期1011-1016,共6页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金重点资助项目(91016006)
关键词 压电梁 模态机电耦合函数 多阶共振抑制 选通电路 piezoelectric beam modal electromechanical function multimode vibration suppression ‘current flowing’circuits
  • 相关文献

参考文献16

  • 1Hagood N W, von Flotow A.Damping of structural vibrations with piezoelectric materials and passive electrical networks[J].Journal of Sound and Vibration.1991,146(2):243-268.
  • 2Crawley E F, de Luis J,Hagood N W,et al.Development of piezoelectric technology for applications in control of intelligent structures[M].Atlanta, GA:IEEE,1988.
  • 3Moheimani S O R. A survey of recent innovations in vibration damping and control using shunted piezoelectric[J].IEEE Transactions on Control Systems Technology.2003,11(4):482-.
  • 4姚军,李岳锋,刘娟.压电薄板的建模和阻尼的准独立模态控制[J].航空学报,2000,21(2):159-163. 被引量:6
  • 5王建军,李其汉.具有分支电路的可控压电阻尼减振技术[J].力学进展,2003,33(3):389-403. 被引量:19
  • 6陈伟民,管德,李敏,诸德超.压电驱动器用于薄板型结构振动主动控制研究[J].航空学报,2001,22(2):109-112. 被引量:15
  • 7Guyomar D, Richard C,Mohammadi S.Semi-passive random vibration control based on statistics[J].Journal of Sound and Vibration.2007,307(3-5):818-833.
  • 8Park C H, Inman D J.Enhanced piezoelectric shunt design[J].Shock and Vibration.2003,10(2):127-133.
  • 9De Marneffe B, Preumont A.Vibration damping with negative capacitance shunts: theory and experiment[J].Smart Materials and Structures.2008,17(3):35015-.
  • 10Carlos N E, Kikuchi S.Design of piezoelectric transducers using topology optimization[J].Smart Materials and Structures.1999,8(3):350-364.

二级参考文献65

  • 1唐永杰,胡选利,张升陛.结构振动控制中压电阻尼技术研究——压电被动阻尼技术(一)[J].压电与声光,1993,15(6):53-56. 被引量:7
  • 2李俊宝.[D].南京:南京航空航天大学,1992.
  • 3唐永杰 张升陛 戴德沛.一种新型被动阻尼技术的研究[A]..第5届全国振动理论及应用学术会论文集(下)[C].,1993.218-223.
  • 4唐永杰.[D].西安:西安交通大学,1994.
  • 5Lesieutre G A. Effective loss factors for switvhed-shunted piezo materials. In: Proc Fourth ARO Workshop on Smart Structures, Session 6, State College, Pennsylvania, 1999.
  • 6Niezrecki C, Cudney H H. Improving the power consumption characteristics of piezoelectric actuators. J Intelligent Material Systeras Structures, 1994, 5:522-529.
  • 7Agnes G S. Active/passive piezoelectric vibration suppression. In: Proc SPIE, Saxt Structures and Materials, 1994.2193:24-34.
  • 8Agnes G S. Development of a modal for simultaneous active and passive piezoelectric vibration suppression. J Intelligent Material Systema and Structures. 1995. 6(4): 482-497.
  • 9Tang J, Wang K W. Vibration control of rotationally periodic structures using passive piezoelectric shunt networks and active compensation. ASME gib Acoust, 1999, 121:379-390.
  • 10Morgan R, Wang K W. An integrated active-parametric control approach for active-passive hybrid piezoelectric network with variable resistance. J Intelligent Mateiral Systems and Structures. 1998.9:564-573.

共引文献37

同被引文献31

  • 1张付兴,阎绍泽.压电陶瓷片与多种电路机电耦合的阻尼特性[J].清华大学学报(自然科学版),2005,45(8):1040-1043. 被引量:9
  • 2刘莹,卜雄洙,庞俊恒.基于压电分支阻尼的多模态电路被动控制的研究和应用[J].南京理工大学学报,2007,31(3):300-303. 被引量:4
  • 3Olson H F.Electronic control of noise,vibration and reverbera- tion[J].Journal of the Acoustical Society of America,1956,28(5):972-976.
  • 4Hagood N W,von Flotow A.Damping of structural vibrations with piezoelectric materials and passive electrical networks[J].Journal of Sound and Vibration,1991,146(2):243-268.
  • 5Park C H,Inman D J.Enhanced piezoelectric shunt design[J].Shock and Vibration,2003,10(2):127-133.
  • 6de Marneffe B,Preumont A.Vibration damping with negative ca- pacitance shunts:Theory and experiment[J].Smart Materials and Structures,2008,17(3):035015.
  • 7Hollkamp J J.Multimodal passive vibration suppression with pie- zoelectric materials and resonant shunts[J].Journal of Intelligent Material Systems and Structures,1994,5(1):49-57.
  • 8Park C H,Park H C.Multiple-mode structural vibration control using negative capacitive shunt damping[J].Journal of Mechani- cal Science and Technology,2003,17(11):1650-1658.
  • 9Deirisola F,Porfiri M,Vidoli S.Piezoelectro mechanical (PEM)structures:Passive vibration control using distributed piezoelectric transducers[J].Comptes Rendus Mecanique,2003,331(1):69-76.
  • 10Batra R C,Dell,Isola F,Vidoli S,et al.Multimode vibration suppression with passive two-terminal distributed network incor- porating piezoceramic transducers[J].International Journal of Solids and Structures,2005,42(11-12):3115-3132.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部