期刊文献+

基于STF和加权改进的群目标跟踪算法 被引量:3

Group targets tracking algorithm based on strong tracking filter and improved weighted method
下载PDF
导出
摘要 为了进一步提高群目标交互多模型跟踪算法的估计性能,提出一种改进的群跟踪算法.首先,通过采用模型转换概率的自适应算法,优化模型与目标运动模式的实时匹配.并通过引入强跟踪滤波(STF,Strong Tracking Filter)中的渐消因子,提高机动阶段时的群质心的状态估计精度.其次,分别利用概率加权法和标量加权法完成群质心状态和扩展状态的融合估计.最后在变分贝叶斯滤波的基础上,建立完整的跟踪算法流程.仿真实验结果表明,该方法不仅能够提高群质心状态和扩展状态的估计精度,还能有效降低机动阶段时的峰值误差. To improve the estimation performance of the existing interactive multiple models tracking algorithm for group targets,an improved group tracking algorithm was proposed.Firstly,by using the adaptive algorithm of model transition probability,the optimization of real-time matching for tracking models with the actual motion pattern was performed.And a fading factor of strong tracking filter was used to improve the estimation accuracy of the centroid state in the maneuvering stage.Then the fusion estimation of centroid state and extension state were implemented by using the probability weighted method and the scalar coefficients weighted method,respectively.Lastly,the implementation steps of the new tracking algorithm were presented in detail,which were based on variational Bayesian filtering algorithm.The computer simulations show that the estimation accuracy of the centroid state and extension state is improved in the new algorithm,and this algorithm can reduce a great deal of peak error in the maneuvering stage.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2014年第8期1102-1108,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学青年基金资助项目(61102109) 航空科学基金资助项目(20120196003) 空军工程大学防空反导学院"研究生科技创新基金"资助项目(HX1112)
关键词 群目标 跟踪 强跟踪滤波 机动阶段 模型转换概率 融合估计 峰值误差 group targets tracking strong tracking filter maneuvering stage model transition probability fusion estimation peak error
  • 相关文献

参考文献15

  • 1Waxmann M J, Drummond O E.A bibliography of cluster (group) tracking[C]//Proceedings of 2004 International Conference on Signal and Data Processing of Small Targets.Orlando,USA:SPIE,2004:551-560.
  • 2Blackman S S, Popoli R.Design and analysis of modern tracking systems[M].Boston:Artech House,1999.
  • 3Mahler R. Multi-target Bayes filtering via first-order multi-target moments[J].IEEE Transactions on Aerospace and Electronic Systems.2003,39(4):1152-1178.
  • 4Mahler R. PHD filters of higher order in target number[J].IEEE Transactions on Aerospace and Electronic Systems.2007, 43(4):1523-1543.
  • 5Lian F, Han C.Sequential Monte Carlo implementation and state extraction of the group probability hypothesis density filter for partly unresolvable group targets tracking problem[J].IET Radar,Sonar and Navigation.2010,4(5):685-702.
  • 6Koch W. Bayesian approach to extended object and cluster tracking using random matrices[J].IEEE Transactions on Aerospace and Electronic Systems.2008,44(3):1042-1059.
  • 7Feldmann M, Franken D.Tracking of extended objects and group targets using random matrices-a new approach[C]//Proceedings of 2008 International Conference on Information Fusion.Piscataway,NJ:IEEE,2008:1-8.
  • 8Feldmann M, Franken D.Advances on tracking of extended objects and group targets using random matrices[C]//Proceedings of 2009 International Conference on Information Fusion.Piscataway,NJ:IEEE,2009:1029-1036.
  • 9Feldmann M, Franken D,Koch W.Tracking of extended objects and group targets using random matrices[J].IEEE Transactions on Signal Processing.2011,59(4):1409-1420.
  • 10Orguner U. A variational measurement update for extended target tracking with random matrices[J].IEEE Transactions on Signal Processing.2012,60(7):3827-3834.

同被引文献32

  • 1刘红,耿文东.基于模式空间的群目标合并与分离方法研究[J].无线电工程,2010,40(2):53-56. 被引量:7
  • 2耿文东.基于PDA的群目标合并与分离方法研究[J].无线电工程,2007,37(2):24-26. 被引量:8
  • 3Lyudmila M, Avishy Y C, Francois S, et al. Overview of Baye sian sequential Monte Carlo methods for group and extended ob jeer tracking[J]. Digital Signal Processing, 2014, 25 : 1 - 16.
  • 4Karl G, Umut O. On spawning and combination of extended/ group targets modeled with random matrices[J]. IEEE Trans. on Signal Processing, 2013, 6(3): 678-692.
  • 5Marcus B, Benjamin N, Uwe D H. Extended object and group tracking with elliptic random bypersurfaee models[C]//Proc, of the 13th International Conference on Information Fusion ,2010 : 1 - 8.
  • 6Mahler R. Multi-target Bayes filtering via first order multi tar- get moments[J]. IEEE Trans. on Aerospace and Electronic Sys- tems, 2003, 39(4): 1152- 1178.
  • 7Anthony S, Daniel C. The single-group PHD filter: an analytic solution[C]//Proc, of the 14th International Conference on In- formation Fusion, 2011 : 41 - 48.
  • 8Daniel C, Simon G. Group target tracking with the Gaussian mixture probability hypothesis density filter[C]//Pro< of the 3rd International Conference on Intelligent Sensors, Sensor Net works and Information, 2007 : 149 - 154.
  • 9Karl G, Christian L, Umut O. Extended target tracking using a Gaussian-mixture PHD Filter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012,48(4) : 3268 - 3286.
  • 10Anthony S, Daniel C. The PHD Filter for extended target tracking with estimable extent shape parameters of varying size[C]//Proc. o f the 15th International Conference on Information Fusion, 2013: 1111-1118.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部