期刊文献+

7次交错群A_7的新刻画 被引量:2

A New Characterization of the Alternating Group A_7 of Degree 7
下载PDF
导出
摘要 给出7次交错群A7的新刻画,证明了:如果G是一个非可解群且G的同阶元素的个数组成的集合是{1,105,350,630,504,210,720}则G≌A7. In this paper,we give a new characterization of the alternating group A7of degree 7.The main result is the following theorem:If Gis a non-solvable finite group and the set,which consists of the number of the same order elements in G,is{1,105,350,630,504,210,720}then G≌A7.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期34-38,共5页 Journal of Southwest University(Natural Science Edition)
基金 新疆维吾尔自治区普通高等学校重点学科基金资助项目(2012ZDXK12)
关键词 有限群 交错群 元素的阶 同阶元素的个数 finite group alternating group the order of an element the number of same order elements
  • 相关文献

参考文献6

  • 1LANG S. ALGEBRA [M]. California: Addison Publishing Company, 1984.
  • 2HUPPET B. Endlich Gruppen I [M]. New York: Springer-Verlag, 1967.
  • 3ROSE J S. A Course on Group Theory [M]. Campridge: Campridge University Press, 1978.
  • 4GORENSTEIN D, Finite Groups [M]. New York: Harperand Row, 1968.
  • 5ISAACS I M. Character Theory of Finite Groups[M]. New York: Academic Press, 1976.
  • 6CONWAY J H, CURTIS R T, NORTON S P, et al. Atlas of Finite Groups [M]. Oxford: Clarendon Press, 1985.

同被引文献35

  • 1钱国华,游兴中,施武杰.中心外的同阶元必共轭的有限群[J].中国科学(A辑),2007,37(10):1160-1166. 被引量:4
  • 2Feit W, Seitz G. On finite rational groups and related topies [ J]. Illinois J Mathematics, 1988,33 (1) :103 -131.
  • 3Isaacs I M. Character Theory of Finite Groups[ M]. Providence RI:Am Math Soc,2006.
  • 4Rose H E. A Course on Finite Groups[ M]. London:Springer- Verlag,2009.
  • 5Kletzing D. Structure and Representations of Q -groups[ C]//Leet Note Math, 1084.New York:Springer- Verlag, 1984.
  • 6Rose J S. A Course on Group Theory[ M]. London:Campridge University Press,1978.
  • 7Huppet B. Endliche Gruppen I [ M ]. New York: Springer - Verlag, 1967.
  • 8Gorenstein D. Finite Groups [ M ]. New York: Harper and Row, 1968.
  • 9Suzuki M. Group Theory I [ M ]. Berlin: Springer - Verlag, 1982.
  • 10Huppet B, Blackburn N. Finite Groups II [ M ]. New York: Springer - Verlag, 1982.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部