期刊文献+

具有非线性发生率的两株SIS传染病模型受季节性因素影响的稳定性分析 被引量:3

Global Stability for a Two-Strain SIS Epidemic Model with Periodical Non-linear Transmission
下载PDF
导出
摘要 考虑一个具有非线性发生率且受季节性因素影响两株SIS传染病模型.首先定义模型的基本再生数R0和每一个菌株基本再生数Rj以及它的入侵再生数Ri j.当R0<1时,无病平衡点全局渐近稳定;当R0>1时,疾病会持续.当R1>1和R2<1时,存在一个唯一周期解是全局稳定的即最终只有菌株1持续;当R1>1和R12>1时,菌株2是强持续的;当R1>1和R2>1并且还满足R12>1和R21>1,那么存在一个周期解是全局稳定的即两个菌株是共存的. In this paper we consider a two-strain SIS epidemic model with periodical nonlinear transmission. Reproductive numbers and invasion reproductive numbers are derived,which agree well with their counterparts usually derived from autonomous epidemic models.With conditions on these reproductive numbers typical results are obtained,such as the local and global stability of the disease-free equilibrium.The existence and uniqueness of a single-strain periodic solution is established.Based on conditions on the invasion reproductive numbers,local stability of the single-strain periodic solution is shown.In the two-strain version of the model,conditions for uniform strong persistence are derived,and coexistence of the two strains is established.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第5期52-60,共9页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11171276) 教育部博导基金资助项目(20100182110003)
关键词 季节性 非线性发生率 周期解 稳定性 seasonality non-linear incidence rate periodic solution stability
  • 相关文献

参考文献13

  • 1ANDERSON R M,MAY R M.Infectious Diseases of Humans:Dynamics and Control[M],Oxford:Oxford University Press,1991.
  • 2NORMILE D,ENSERINK M.With Change in the Seasons,Bird Flu Returns[J].Science,2007,315(5811):448-448.
  • 3HETHCOTE H W.Asymptotic Behavior in a Deterministic Epidemic Model[J].Bull Math Biol,1973,35:607-614.
  • 4DIETZ K.The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations[J].Mathematical Models in Medicine,1976,11:1-15.
  • 5MARTCHEVA M.A Non-Autonomous Multi-Strain SIS Epidemic Model[J].J Biol Dyn,2009,3(2-3):235-251.
  • 6LIU W M,LEVIN S A,IWASA Y.Influence of Nonlinear Incidence Rates upon the Behaviour of SIRS Epidemiological Models[J],J Math Biol,1986,23(2):187-204.
  • 7BRIGGS C J,GODFRAY H C J.The Dynamics of Insect-Pathogen Interactions in Stage-Structured Populations[J].Am Nat,1995,145(6);855-887.
  • 8KOROBEINIKOV A,MAINI P K.Nonlinear Incidence and Stability of Infectious Disease Models[J].Math Med Biol,2005,22(8):113-128.
  • 9WANG W,ZHAO X Q.Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments[J].J Dyn Differ Equ,2008,20(3):699-717.
  • 10THIEME H R.Mathematics in Population Biology[M].Princeton:Princeton University Press,2003.

同被引文献14

  • 1LEELING M, ROHANI P. Modelling Infectious Disease in Humans and Animals [M]. Princeton: Princeton UniversityPress, 2008.
  • 2ZHOU YC,CAO H. Discrete Tuberculosis Transmission Models and Their Application [C]// New Perspectives inMathematical Biology. Providence: American Mathematical Society, 2010.
  • 3BACAER N_ Approximation of the Basic Reproduction Number R0 for Vector-Borne Disease with a Periodic Vector Pop-ulation [J], Bull Math Biol, 2007,69(3) : 1067 - 1091.
  • 4LIU L, ZHAO X Q,ZHOU Y. A Tuberculosis Model with Seasonality [J]. Bull Math Biol, 2010,72(4) : 931 - 952.
  • 5WANG W D,ZHAO X Q. Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments [J], JDynam Differential Equations, 2008, 20(3) : 699 - 717.
  • 6ZHANG F,ZHAO X Q. A Periodic Epidemic Model in a Patchy Environment [J]. J Math Anal Appl, 2007,325(1):496-516.
  • 7ZHAO X Q. Dynamical Systems in Population Biology [M]. New York: Springer-Verlag,2003.
  • 8杨名远,刘茂省.复杂网络中流行病模型的全局渐近稳定性及其分支[J].复旦学报(自然科学版),2011,50(1):1-9. 被引量:1
  • 9宋海涛,刘胜强.具有一般复发现象的疾病模型的全局稳定性[J].应用数学学报,2017,40(1):37-48. 被引量:3
  • 10穆宇光,徐瑞.一类具有饱和发生率和复发的随机SIRI模型的稳定性[J].应用数学,2019,32(3):570-580. 被引量:5

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部