期刊文献+

基于参数设计字典的稀疏表示方法 被引量:2

The Method of Sparse Representation Based on Parameter Dictionary Design
下载PDF
导出
摘要 稀疏化是压缩感知理论的关键,对信号恰当的稀疏表示能提高恢复的精度.本文提出一种基于参数字典的稀疏表示方法,把参数字典设计作为一个优化问题来分析,通过交替迭代的方式求得参数方程的可行解,进而生成参数字典.本文的参数字典设计方法较其他方法而言能获得较优的近似解,且该方法产生的优化字典更符合紧框架特性. Sparsity is the key to compressed sensing theory. The appropriate sparse representation can im- prove the accuracy for signal recovering. In this article, we propose a method based on the parameter dictionary design for sparse representation. This means that the parameter dictionary design is considered as an optimization problem. Further, through the alternating iterative method, we can obtain a feasible solution of parametric equations and produce a parameter dictionary. The parameter dictionary design can acquire the approximate optimum solution compared to other methods. In the parameter dictionary design
作者 刘传山
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第7期156-161,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(61303227) 中央高校基本科研业务费专项资金资助(XDJK2014C002)
关键词 参数字典 压缩感知 稀疏化 稀疏重构 parameter dictionary compressed sensing sparisty sparse reconstruction
  • 相关文献

参考文献11

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2黄丽雯,庞柯,汪鑫,施帮利,王涛,炊万年.基于小波包分析的颅颌面纹理特征提取方法[J].西南师范大学学报(自然科学版),2013,38(11):59-63. 被引量:3
  • 3ELAD M, MILANFAR P, RUBINSTNIN R. Analysis Versus Synthesis in Signal Priors [J]. Inverse Problems, 2007, 23(3): 947-968.
  • 4彭茂玲,陈善雄,余光琳.一种基于压缩感知的入侵检测方法[J].西南大学学报(自然科学版),2014,36(2):186-192. 被引量:10
  • 5SUSTIK M, TROPP J, DHILLON 1. et al. On the Existence of Equiangular Tight Frames [J]. Linear Algebra and Its Applications, 2007, 426(2/3): 619-635.
  • 6JACQUES L, DE VLEESCHOUWER C. A Geometrical Study of Matching Pursuit Parametrization [J]. IEEE Trans. Signal Processing, 2008, 56(7): 2835-2848.
  • 7GUNAWARDANA A, BYRNE W. Convergence Theorems for Generalized Alternating Minimization Procedures [J]. The Journal of Machine Learning Research, 2005(6) : 2049-2073.
  • 8GEDALYAHU K, TUR R, ELDAR Y C. Multichannel Sampling of Pulse Streams at the Rate of Innovation [J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1491-1504.
  • 9TUR R, ELDAR Y C, FRIEDMAN Z. Innovation Rate Sampling of Pulse Streams with Application to Ultrasound Ima- ging [J]. IEEE Transactions on Signal Processing. 2011, 59(4): 1827- 1842.
  • 10GRIBONVAL R, NIELSEN M. Sparse Representations in Unions of Base [J]. IEEE Transactions on Information Theo- ry, 2003, 49(12): 3320-3325.

二级参考文献70

共引文献81

同被引文献9

  • 1PAL P,VAIDYANATHAN P P. Nested Arrays : A Novel Approach to Array Processing with Enhanced Degrees ofFreedom [J]. IEEE Transactions on Signal Processing, 2010 , 58(8) : 4167 - 4181.
  • 2VAIDYANATHAN P P, PAL P. Sparse Sensing with Co-Prime Samplers and Arrays [J]. IEEE Transactions on SignalProcessing, 2011,59(2) : 573一586.
  • 3PAL P, VAIDYANATHAN P P. Coprime Sampling and The Music Algorithm [C] // IEEE in Digital Signal ProcessingWorkshop and IEEE Signal Processing Education Workshop (DSP/SPE). Sedona: AZ,IEEE, 2011 : 289 - 294.
  • 4ZHANG Yi-min, AMIN M G,HIMED B. Sparsity-Based DOA Estimation Using Co-prime Arrays [C] // IEEE Inter-national Conference on Acoustics, Speech and Signal Processing (ICASSP). Vancouver: BC,IEEE,2013 : 3967 - 3971.
  • 5CHI Yu-jie, SCHARF L L, PEZESHKI A, et al. Sensitivity to Basis Mismatch in Compressed Sensing [J]. IEEETransactions on Signal Processing, 2011, 59(5) : 2182 - 2195.
  • 6TAN Zhao, NEHORAI A. Sparse Direction of Arrival Estimation Using Co-Prime Arrays with Off-Grid Targets [J].IEEE Signal Processing Letters, 2014 , 21(1) : 26 - 29.
  • 7LIAO Wen-jing, FANNJIANG A. MUSIC for Single-Snapshot Spectral Estimation: Stability and Super-Resolution [J].Applied and Computation Harmonic Analysis. 2016,40(1) : 33 - 67.
  • 8夏天维.基于SSR子带信息融合的波达方向宽带估计算法[J].西南师范大学学报(自然科学版),2015,40(1):102-106. 被引量:1
  • 9卢涛,万永静,杨威.基于稀疏主成分分析和自适应阈值选择的图像分割算法[J].计算机科学,2016,43(7):95-100. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部