期刊文献+

振动信号频率跟踪的反馈修正自适应陷波器法 被引量:6

Feedback corrected adaptive notch filter for vibration signal frequency tracking
下载PDF
导出
摘要 采用自适应陷波器跟踪振动信号频率时,存在持续跟踪精度不高的问题。通过分析指出持续跟踪精度不高的根本原因是ANF误差收敛至局部最优值,借鉴反馈控制思想,提出一种反馈修正ANF。根据ANF输入输出信号的相关性,设计频率跟踪精度评估因子,实时监控ANF频率跟踪精度。若评估因子小于给定阈值,则认为ANF丢失振动信号频率,通过反馈调整ANF参数而非重新初始化来适当增加陷波带宽,使其能重新跟踪到信号频率又具有较快的重新收敛速度。以一种基于Steiglitz-McBride方法的ANF(SMM-ANF)为例,分析了反馈修正策略,给出流程和具体算法。仿真比较了格型ANF、SMM-ANF和反馈修正SMM-ANF的性能,给出科里奥利质量流量计应用实例,结果表明:反馈修正SMM-ANF收敛速度稍慢于SMM-ANF,快于格型ANF,持续跟踪精度明显提高。 The precision of vibration frequency estimation with an adaptive notch filter (ANF)is not satisfactory all the time.It was found through analysis that the fundamental reason is the ANF error converges to a local optimum value. Here,a feedback corrected ANF was proposed of an ANF,with the idea of feedback control.According to the correlation between an input signal and an output one,a factor evaluating its frequency tracking accuracy was designed to monitor its working status.If the factor was less than a given threshold value,it was said that the ANF lost vibration frequency. Then,it was demanded to enlarge the bandwidth of the ANF so that the frequency could be re-tracked accurately.To insure the faster re-converging speed,a feedback strategy adjusting the ANF's parameters appropriately rather than re-initialization was applied.An ANF based on Steiglitz-McBride method(SMM-ANF)was taken as an example to illustrate the feedback correction strategy.Its flow process and the corresponding algorithm were also exhibited.The performances of a Lattice ANF,a SMM-ANF and a feedback corrected SMM-ANF were compared with simulations.An instance of the proposed method applied in Coriolis mass flow meter was given briefly.Results showed that the convergence rate of the feedback corrected SMM-ANF is lower than that of the original SMM-ANF,higher than that of the lattice ANF;its continual frequency tracking performance is obviously better than that of the others.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第3期145-149,176,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(61271449 61302175) 重庆市自然科学基金重点项目(CSTC 2011BA2015) 重庆市基础与前沿研究计划项目(cstc2013jcyjA40030)
关键词 频率跟踪 自适应陷波器 反馈修正 科里奥利质量流量计 frequency tracking adaptive notch filter feedback correction Coriolis mass flow meter
  • 相关文献

参考文献15

  • 1张磊,束立红,刘永光,付永领.基于级联自适应陷波器的正弦波频率估计[J].信号处理,2006,22(3):387-389. 被引量:7
  • 2Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbea spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London Series A, 1998,454:903 -995.
  • 3Johansson A T, White P R. Instantaneous frequency estimation at low signal-to noise ratios using time-varying notch filters [ J ]. Signal Processing, 2008, 88 (5) : 1271 - 1288.
  • 4FENG Jining,YANG Xiaobo,DIAO Zhejun,GONG Wenfei,WU Siliang.NLFM Interference Suppressing Based on Time-Varying AR Modeling and Adaptive IIR Notch Filter[J].Chinese Journal of Electronics,2011,20(4):676-680. 被引量:1
  • 5梁国龙,杨春,王德俊.频点自跟踪自适应频率估计器性能研究[J].电子学报,2005,33(7):1204-1208. 被引量:13
  • 6储昭碧,张崇巍,冯小英.基于自适应陷波滤波器的频率和幅值估计[J].自动化学报,2010,36(1):60-66. 被引量:31
  • 7So H C. Adaptive algorithm for direct estimation of sinusoidal frequency [ J ]. Electronics Letters, 2000, 36 ( 8 ) : 759 - 760.
  • 8Rim E K, Sofiane C, Roberto L V, et aL Closed-form real single-tone frequency estimator based on a normalized fIR notch filter [ J ]. Signal Processing, 2010, 90 ( 6 ) : 1905-1915.
  • 9Liang J L, Ji B J, Zhang J Y, et al. Recurisve least squares- like algorithms for the adaptive second-order lattice notch filter[J]. Digital Signal Processing, 2008, 18 (3): 291 - 306.
  • 10Liao H E. Two discrete oscillator based adaptive notch filters ( OSC ANFs) for noisy sinusoids [ J ]. IEEE Transactions on Signal Processing, 2005, 53(2): 528- 538.

二级参考文献41

  • 1徐科军,倪伟,陈智渊.基于时变信号模型和格型陷波器的科氏流量计信号处理方法[J].仪器仪表学报,2006,27(6):596-601. 被引量:34
  • 2曾健,刘凤新,简灿琴,严威.用于科里奥利质量流量计的数字信号处理方法[J].计量技术,2007(3):3-6. 被引量:8
  • 3林振声.概周期微分方程与积分流形.上海:上海科学技术出版社,1982.166-219.
  • 4Xiao Y, Tadokoro Y, Kobayashi Y. A new memoryless non- linear gradient algorithm for a second-order adaptive IIR notch filter and its performance analysis. IEEE Transactions on Circuits and Systems H: Analog and Digital Signal Processing, 1998, 45(4): 462-472.
  • 5Xiao Y, Takeshita Y, Shida K. Steady-state analysis of a plain gradient algorithm for a second-order adaptive IIR notch filter with constrained poles and zeros. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2001, 48(7): 733-740.
  • 6Karimi-Ghartemani M, Ziarani A K. Performance characterization of a nonlinear system as both an adaptive notch filter and a phase-locked loop. International Journal of Adaptive Control Signal Process, 2004, 18(1): 23-53.
  • 7McNamara D M, Ziarani A K, Ortmeyer T H. A new technique of measurement of nonstationary harmonics. IEEE Transactions on Power Delivery, 2007, 22(1): 387-395.
  • 8Regalia P A. An improved lattice-based adaptive IIR notch filter. IEEE Transactions on Signal Processing, 1991, 39(9): 2124-2128.
  • 9Bodson M, Douglas S C. Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency. Automatica, 1997, 33(12): 2213-2221.
  • 10Hsu L, Ortega R, Damm G. A globally convergent frequency estimator. IEEE Transactions on Automatic Control, 1999, 44(4): 698-713.

共引文献64

同被引文献103

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部