期刊文献+

基于核递推最小二乘的自适应均衡的弱故障提取方法研究

Adaptive equalization method based on kernel recursive least square and its application in weak fault extraction
下载PDF
导出
摘要 针对传统的自适应均衡方法存在的不足,提出了一种基于核递推最小二乘(KRLS)的非线性系统自适应均衡方法。该方法通过引入核函数,将原始的非线性数据映射到高维特征空间,然后在高维特征空间中实施标准最小二乘算法。提出的方法并与传统的非线性系统均衡方法进行了对比分析,仿真研究表明,提出的方法优于传统的均衡方法,能很好的消除传递通道的影响,有效地提取出弱冲击性成分。最后,将提出的方法应用到转子系统的弱冲击性故障提取中,实验结果进一步验证了提出的方法的有效性。 Aiming at defects of the traditional self-adaptive equalization,a new self-adaptive equalization method based on kernel recursive least-square(KRLS)was proposed.With the proposed method,the original nonlinear data were mapped to a high-dimensional feature space by introducing a kernel function.Then,the standard least-square algorithm was implemented in the high-dimensional feature space.the proposed method was compared with the traditional self-adaptive equalization one.The simulation results showed that the proposed method is supiror to the raditional self-adaptive equalization one;the new method can effectively eliminate the influence of transfer channels.Finally,the proposed method was applied to extraction of weak impact faults in a rotor system,the test results verified the validity of the proposed method.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第4期7-10,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(51075372 50775208) 湖南省机械设备健康维护重点实验室开放基金(200904) 江西省教育厅科技计划项目(GJJ12405)
关键词 核递推最小二乘 自适应均衡 故障诊断 冲击故障 adaptive equalization fault diagnosis impact fault
  • 相关文献

参考文献9

  • 1李志农,蒋静,冯辅周,袁振伟.基于量子粒子群优化Volterra时域核辨识的隐Markov模型识别方法[J].仪器仪表学报,2011,32(12):2693-2698. 被引量:12
  • 2李志农,刘卫兵,易小兵.基于局域均值分解的机械故障欠定盲源分离方法研究[J].机械工程学报,2011,47(7):97-102. 被引量:55
  • 3Li Z N, He Y Y, Chu F L, et al. Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and factorial hidden markov model [ J ] , Journal of Sound and Vibration, 2006, 291(1-2): 60-71.
  • 4Van Vaerenbergh S. Kernel methods for nonlinear identification, equalization and separation of signals [ D ]. University of Cantabria, 2009.
  • 5Shigeo A. Sparse least squares support vector training in the reduced empirical feature space [ J ]. Pattern Analysis and Applications(PAA), 2007, 10(3) : 203 - 214.
  • 6Courant R, Hilbert D. Methods of mathematical Physics ~ M ]. American: Wiley-Interscience, 1989.
  • 7Ben-Hur A, Ong C S, Sonnenburg S, et al. Support vector machines and kernels for computational biology [ J ]. PloS Computational Biology, 2008, 4(10) : 1 - 10.
  • 8Ilin A, Honkela A. Post-nonlinear Independent component analysis by variational bayesian learing [ C 3. Proceedings of the Fifth International Conference on Independent Component Analysis and Blind Signal Separation (ICA 2004) , Granada, Spain, September 2004, 766 - 773.
  • 9李志农,赵匡,何况.核递推最小二乘辨识算法仿真研究[J].南昌航空大学学报(自然科学版),2011,25(2):1-6. 被引量:2

二级参考文献28

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部