摘要
针对传统的自适应均衡方法存在的不足,提出了一种基于核递推最小二乘(KRLS)的非线性系统自适应均衡方法。该方法通过引入核函数,将原始的非线性数据映射到高维特征空间,然后在高维特征空间中实施标准最小二乘算法。提出的方法并与传统的非线性系统均衡方法进行了对比分析,仿真研究表明,提出的方法优于传统的均衡方法,能很好的消除传递通道的影响,有效地提取出弱冲击性成分。最后,将提出的方法应用到转子系统的弱冲击性故障提取中,实验结果进一步验证了提出的方法的有效性。
Aiming at defects of the traditional self-adaptive equalization,a new self-adaptive equalization method based on kernel recursive least-square(KRLS)was proposed.With the proposed method,the original nonlinear data were mapped to a high-dimensional feature space by introducing a kernel function.Then,the standard least-square algorithm was implemented in the high-dimensional feature space.the proposed method was compared with the traditional self-adaptive equalization one.The simulation results showed that the proposed method is supiror to the raditional self-adaptive equalization one;the new method can effectively eliminate the influence of transfer channels.Finally,the proposed method was applied to extraction of weak impact faults in a rotor system,the test results verified the validity of the proposed method.
出处
《振动与冲击》
EI
CSCD
北大核心
2014年第4期7-10,共4页
Journal of Vibration and Shock
基金
国家自然科学基金(51075372
50775208)
湖南省机械设备健康维护重点实验室开放基金(200904)
江西省教育厅科技计划项目(GJJ12405)