期刊文献+

T型耦合板结构振动特性研究 被引量:4

Vibration analysis of a T-coupled plate structure
下载PDF
导出
摘要 以T型耦合板为研究对象,在同时考虑面内振动和面外振动条件下采用改进傅里叶级数方法(Improved Fourier Series Method,IFSM)对其自由振动特性进行了计算分析。板结构的面内振动和面外振动位移函数表示为改进傅里叶级数形式,并引入正弦傅里叶级数以解决边界的不连续或跳跃现象。将位移函数的级数展开系数作为广义坐标,采用Rayleigh-Ritz方法对其进行求解。通过对不同边界条件及耦合连接情况下T型板自由振动特性进行计算,并将之与有限元法结果相比较,验证了该方法的正确性和有效性,为耦合板结构的振动控制提供可靠的理论依据。 Here,an analytical method,the improved Fourier series method (IFSM)was presented for the free vibration analysis of a T-coupled plate with general boundary conditions.The in-plane vibration and out-of-plane vibration were taken into account via four types of coupling springs of arbitrary stiffnesses.Regardless of boundary conditions,the transverse and in-plane vibration displacement functions were taken as a new form of trigonometric expansion with accelerated convergence. The displacement functions could overcome all the relevant discontinuities of the elastic boundaries.The expansion coefficients were considered as the generalized coordinates,and they were determined using Rayleigh-Ritz method.The free vibration analysis of the T-coupled plate with various boundary and coupling conditions was performed using the proposed method.The reliability and accuracy of the proposed method were validated with the FEM results.This study provided a reliable and theoretical basis for vibration control of coupled plate structures.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第4期185-189,198,共6页 Journal of Vibration and Shock
基金 国家留学基金(2011668004) 科技部国际科技合作项目(2011DFR90440)
关键词 T型耦合板结构 改进傅里叶级数 任意边界条件 能量法 T-coupled plate general boundary condition energy method
  • 相关文献

参考文献9

  • 1Cremer L, Heckl M, Ungar. E E. Structure-borne Sound[ M ]. 2na ed. Berlin : Springer Verlag, 2005.
  • 2Shen Y, Gibbs B M. An approximate solution for the bending vibrations of a combination of rectangular thin plates [ J ]. Journal of Sound and Vibration, 1986, 105 ( 1 ) :73 - 90.
  • 3Kessissoglou N J. Power transmission in L-shaped plates including flexural and in-plane vibration [ J ]. Journal of the Acoustical Society. 2004. 115:1157-1169.
  • 4游进 李鸿光 孟光.耦合板结构随机能量有限元分析.振动与冲击,2009,28(11):43-46.
  • 5李凯,黎胜,赵德有.耦合板结构振动波传递及能量分布可视化研究[J].船舶力学,2011,15(4):419-426. 被引量:10
  • 6闫安志,崔润卿.耦合板的导纳功率流[J].焦作工学院学报,2001,20(2):144-147. 被引量:3
  • 7Du J, Li W L, Liu Z, et al. Free vibration of two elastically coupled rectangular plates with uniform elastic boundary restraints[ J]. Journal of Sound and Vibration, 2011 ,330(4) : 788 - 804.
  • 8Li W L. Free vibrations of beams with general boundary conditions [ J ]. Journal of Sound and Vibration, 2000,237 ( 4 ) : 709 - 725.
  • 9Li W L. Vibration analysis of rectangular plates with general elastic boundary supports [ J ]. Journal of Sound and Vibration, 2004, 273(3):619-635.

二级参考文献20

  • 1伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究[J].船舶力学,2005,9(4):138-145. 被引量:32
  • 2仪垂杰,连小珉,蒋孝煜.梁-阶梯板耦合结构的功率流[J].清华大学学报(自然科学版),1996,36(3):96-100. 被引量:9
  • 3清华大学工程力学系固体力学教研组振动组.振动力学[M].北京:机械工业出版社,1980..
  • 4Cremer L, Heckl M, Ungar E E. Structure-borne Sound[M]. Second Edition. Berlin: Springer-Verlag, 2005.
  • 5Cuschieri J M, McCollum M D. In-plane and out-of-plane waves power transmission through an L-type junction using mobility power flow approach[J]. Journal of the Acoustical Society of America, 1996, 100(2): 857-870.
  • 6Wang Z H, Xing J T, Price W G. An investigation of power flow characteristics of L-shaped plates adopting a substruc- ture approach[J]. Journal of Sound and Vibration, 2002, 250(4): 627-648.
  • 7Kessissoglou N. Power transmission in L-shaped plates including flexural and in-plane vibration[J]. J Acoust. Soe. Am., 2004, 115: 1157-1169.
  • 8Bernhard R J, Bouthier O. Model of the space averaged energetics of plates[J]. AIAA Paper 90-3921, 1990.
  • 9Bouthier O, Bernhard R J. Simple models of energy flow in vibrating plates[J]. Journal of Sound and Vibration, 1995, 182: 149-164.
  • 10Ichchou M N, Jezequel L. Comments on simple models of the energy flow in vibrating membranes and transversely vi- brating plates[J]. Journal of Sound and Vibration, 1996, 195: 679-685.

共引文献17

同被引文献45

  • 1张承宗,杨光松.各向异性板结构横向弯曲一般解析解[J].力学学报,1996,28(4):429-440. 被引量:41
  • 2黄炎,廖瑛,谢燕.双参数弹性地基上受压的正交异性板的自由振动[J].工程力学,2006,23(6):46-49. 被引量:6
  • 3游进 李鸿光 孟光.耦合板结构随机能量有限元分析.振动与冲击,2009,28(11):43-46.
  • 4Lin Tian-ran, Tan A C C, Yan Cheng, et al. Vibration of L- shaped plates under a deterministic force or moment excitation: a case of statistical energy analysis application [J]. Journal of Sound and Vibration, 2011, 330:4780 - 4797.
  • 5Li Xian-hui. A scaling approach for high-frequency vibration analysis of line-coupled plates [ J ]. Journal of Sound and Vibration, 2013, 332 : 4054 - 4058.
  • 6Cuschieri J M, McCollum M D. In-plane and out-of-plane waves' power transmission through an L-plate junction using the mobility power flow approach [ J ]. Journal of the Acoustical Society of America, 1996, 100(2):857-870.
  • 7Du Jing-tao,Li W L, Liu Zhi-gang, et al. Free vibration of two elastically coupled rectangular plates with uniform elastic boundary restraints [ J ]. Journal of Sound and Vibration, 2011, 330 : 788 - 804.
  • 8Chen Yue-hua, Jin Guo-yong, Zhu Ming-gang, et al. Vibration behaviors of a box-type structure built up by plates and energy transmission through the structure [ J ]. Journal of Sound and Vibration, 2012, 331 : 849 - 867.
  • 9Song Zhi-guang, Li Feng-ming. Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow [ J ]. International Journal of Mechanical Sciences. 2014, 81:65-72.
  • 10Johansson C, Pacoste C, Karoumi R. Closed-form solution for the mode superposition analysis of the vibration in multi-span beam bridges caused by eoncentrated moving loads [ J ]. Computers and Structures. 2013, 119:85 -94.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部