期刊文献+

轴向运动梁的横向随机响应 被引量:3

Transverse random response of an axially moving beam
下载PDF
导出
摘要 轴向运动梁是许多飞行器结构的简化模型,随着长细比增加和质量减小,梁的弹性特征愈加明显,同时运动速度对运动梁的振动特性也有显著影响。根据汉密尔顿原理(Hamilton’s principle),推导出轴向运动欧拉-伯努利(Euler-Bernoulli)梁模型受横向激励作用时的动力学控制方程。首先,在有轴向力和无轴力情况下分别对方程进行无量纲化、复模态分析,得到统一形式的频率方程和模态函数,可以用数值方法求解其固有频率和模态函数。然后,将动力学方程解耦为一个微分方程组,求解方程组,得到轴向运动梁在横向激励下位移的响应。最后,用数理统计的方法,计算随机响应的相关函数,再做傅里叶变换(Fourier transform)后得到复数形式的随机响应谱。数值算例的结果表明,轴向运动速度对自由梁的振动特性和随机响应有显著影响。 An axially moving beam is a simplified model for many aircraft structures.Its elasticity is patently more obvious with its slenderness ratio increased and mass reduced,and its velocity has a significant effect on its vibration characteristics at the same time.Here,the dynamic equation of transverse vibration of an axially moving beam subjected to a transverse excitation was derived with Hamilton's principle.At first,the dimensionless method and complex modal analysis method were applied to simplify the equation with an axial force or without an axial one.The frequency equation and modal functions were obtained,they were solved using the numerical method.Then,the decoupling method was used to simplify the control equation into a set of differential equations,the displacement responses of the beam were gained after solving those equations.Finally,the random response's correlation function was calculated by using the method of mathematical statistics,and the random response spectrum of the beam was achieved via Fourier transformation.The numerical example illustrated that the beam's moving velocity can affect its vibration characteristics and random responses significantly.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第9期78-82,共5页 Journal of Vibration and Shock
基金 国家自然科学基金重点项目(11232009) 上海市重点学科建设项目(S30106)资助
关键词 轴向运动梁 复模态 傅里叶变换 随机响应 axially moving beam complex mode Fourier transformation random response
  • 相关文献

参考文献12

  • 1Mote 3r C D. A study of band saw vibrations [ J ]. Journal of the Franklin Institute, 1965, 276 (6) :430 - 444.
  • 2Simpson A. Transverse modals and frequen-cies of beams translating between fixed and supports [ J ]. Journal of Mechanical Enginee-ring Science, 1973, 15 (3) : 159 - 164.
  • 3Wickert J A, Mote Jr C D. Classical vibration analysis of axially moving continua [ J ]. Journal of Applied Mechanics. 1990, 57(3) :738 -744.
  • 4Oz H R. On the vibrations of an axially traveling beam on fixed supports with variable velocity [ J ]. Journal of Sound Vibration, 2001, 239, (3) :556 - 564.
  • 5冯志华,胡海岩.内共振条件下直线运动梁的动力稳定性[J].力学学报,2002,34(3):389-400. 被引量:56
  • 6Chen L Q, Yang X D. Steady-state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models [ J ]. International Journal of Solids and Structures, 2005,42( 1 ) :37 - 50.
  • 7Lee U, Oh Hyungmi. Dynamics of an axially moving viscoelastic beam subject to axial tension [ J ]. International Journal of Solids and Structures, 2005,42 (8) :2381 -2398.
  • 8Ding H, Chen L Q. Galerkin methods for natural frequencies of high-speed axially moving beams[ J ]. Journal of Sound and Vibration, 2010, 329( 17): 3484- 3494.
  • 9Liu D, Xu W, Xu Y. Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation [ J]. Journal of Sound and Vibration, 2012, 331 (17) : 4045 -4056.
  • 10Williams T, Bolender M A, Doman D B, et al. An aerothermal flexible modal analysis of a hypersonic vehicle [ C l// AIAA Atmospheric Flight Mechanics Conference and Exhibit,2006,AIAA-6647, Keystone, Colorado.

二级参考文献31

  • 1Mote Jr C D. A study of band saw vibrations [J]. Journal of the Franklin Institute, 1965,279 (6) : 430- 444.
  • 2Fung R F, Lu P Y, Tseng C C. Non-linearly dynamic modeling of an axially moving beam with a tip mass [J]. Journal of Sound and Vibration, 1998, 218 (4) : 559-571.
  • 3Zhu W D, Ni J, Huang J. Active control of translating media with arbitrarily varying length[J]. Journalof Vibration and Acoustics, 2001,123(6):347-358.
  • 4Gosselin F, Paidoussis M P, Misra A K. Stability of a deploying/extruding beam in dense fluid[J]. Journal of Sound and Vibration, 2007,299 : 123-142.
  • 5Trevor Williams, Michael A Bolender, David B Doman, et al. An aerothermal flexible mode analysis of a hypersonic vehicle[Z]. AIAA-2006-6647.
  • 6Adam J Culler, Trevor Williams, Michael A Bolende. Aerothermal modeling and dynamic analysis of a hypersonic vehicle[Z]. AIAA-2007-6395.
  • 7Katauhiko Ogata. Modern control engineering (fourth edition)[M]. Beijing: Publishing House of Electronics Industry, 2003 : 830-832.
  • 8Prabhu D K, Wright M J, Marvin J G. X-33 aerothermal design environment predictions: verification and validation[Z]. AIAA-2000-2686.
  • 9Kane TR,Ryan RR,Banerjee AK.Dynamics of a cantilever beam attached to a moving base.Journal of Guidance,Control,and Dynamics,1987,10(2): 139~151
  • 10Nayfeh AH,Mook DT.Nonlinear Oscillations.New York: John Wiley & Sons,1979.304~321

共引文献60

同被引文献21

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部