期刊文献+

谱流形快速学习算法研究 被引量:1

Fast Learning Algorithm of Spectral Manifold
下载PDF
导出
摘要 谱流形学习算法的目标是发现嵌入在高维数据空间中的低维表示,其近年来得到了广泛的应用。虽然已经取得了许多令人骄傲的成绩,但是却存在一个很大的瓶颈——计算复杂度太高,这严重阻碍了算法在实际中的应用。提出了谱流形快速学习算法,该算法包括两个降低算法复杂度的技术:(1)通过随机选择或者k-means方法从n个样本点中选出p个锚点,把每个样本点表达为由锚点的邻域点线性组合的形式,从而设计了邻接矩阵的新形式,降低了邻接图的计算复杂度;(2)利用线性化的流形学习算法有效地计算高维数据到低维数据的映射,从而降低了优化特征值的计算复杂度。该算法在3个常用人脸数据集(Yale、ORL、Extended Yale B)上得到了验证,进一步证明了算法的有效性。 Learning algorithm of spectral manifold aims at discovering a low-dimensional representation in the high-dimensional vector space, which has been widely used recently. Although it has achieved many proud achievements, there is a very big bottleneck that computational complexity is very high, which limits its application in practice. This paper proposes a novel approach, called fast learning algorithm of spectral manifold (FSM). FSM includes two technologies to reduce high computational complexity:(1) FSM selects p anchor points from n data points through random selection or k-means selection and represents the data points as the linear combinations of these anchor points. Thus this paper designs a new form of adjacency matrix, which reduces the computational complexity of adjacency graph. (2) Linear manifold learning can be used for computing the low-dimensional parameterization of high-dimensional data effectively, which reduces the computational complexity of the optimal eigenvalue. The experimental results on face databases (Yale, ORL and extended Yale B) show the effectiveness of the proposed FSM method.
出处 《计算机科学与探索》 CSCD 2014年第6期735-742,共8页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.60970067 61033013 60775045 东吴学者计划No.14317360 苏州大学国家预研基金No.SDY2011A25~~
关键词 谱方法 流形学习 锚点 邻接矩阵 spectral method manifold learning anchor points adjacency matrix
  • 相关文献

参考文献26

  • 1Wang Huan, Yan Shuicheng, Xu Dong, et al. Trace ratio vs. ratio trace for dimensionality reduction[C]//Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07). Piscataway, NJ, USA: IEEE, 2007: 1-8.
  • 2He Xiaofei, Cai Deng, Yan Shuicheng, et al. Neighborhood preserving embedding[C]//Proceedings of the 10th IEEE International Conference on Computer Vision (ICCV '05). Washington, DC, USA: IEEE Computer Society, 2005: 1208-1213.
  • 3Yan Shuicheng, Wang Huan. Semi-supervised learning by sparse representation[C]//Proceedings of the 2009 SlAM International Conference on Data Mining (SDM '09). Phila- delphia, PA, USA: SIAM, 2009: 792-801.
  • 4Seung H S, Lee D D. The manifold ways of perception[J].Science, 2000, 290(5500): 2268-2269.
  • 5Maaten L J, Postma E O, Herik H J. Dimensionality reduc- tion: a comparative review, TiCC-TR 2009-005[R]. Nether- lands: University Tilburg, 2009.
  • 6Xu Senlin, Xue Chunhua, Hu Zisheng, et al. Modem differ- ential geometry--spectral theory and isospectrum problems, curvature and topological invariants[M]. Hefei: University of Science and Technology of China Press, 2009.
  • 7Hardle W. Applied nonparametric regression[M]. Cambridge: Cambridge University Press, 1992.
  • 8Tong S, Chang E. Support vector machine active learning for image retrieval[C]//Proceedings of the 9th ACM Interna- tional Conference on Multimedia (MULTIMEDIA '01). New York, NY, USA: ACM, 2001: 107-118.
  • 9Belhumeur P N, Hespanha J P, Kriegman J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projec- tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 10Samaria F S, Harter A C. Parameterisation of a stochastic model for human face identification[C]//Proceedings of the 2nd 1EEE Workshop on Applications of Computer Vision (ACV '94). Piscataway, NJ, USA: IEEE, 1994: 138-142.

同被引文献21

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部