期刊文献+

Consensus control for multi-agents in a non-rectangular bounded space: algorithmand experiments

多智能体在非矩形有界空间中的一致性控制算法和实验(英文)
下载PDF
导出
摘要 Aiming for the coordinated motion and cooperative control of multi-agents in a non-rectangular bounded space, a velocity consensus algorithm for the agents with double- integrator dynamics is presented. The traditional consensus algorithm for bounded space is only applicable to rectangular bouncing boundaries, not suitable for non-rectangular space. In order to extend the previous consensus algorithm to the non- rectangular space, the concept of mirrored velocity is introduced, which can convert the discontinuous real velocity to continuous mirrored velocity, and expand a bounded space into an infinite space. Using the consensus algorithm, it is found that the mirrored velocities of multi-agents asymptotically converge to the same values. Because each mirrored velocity points to a unique velocity in real space, it can be concluded that the real velocities of multi-agents also asymptotically converge. Finally, the effectiveness of the proposed consensus algorithm is examined by theoretical proof and numerical simulations. Moreover, an experiment is performed with the algorithm in a real multi-robot system successfully. 针对多智能体在非矩形有界空间的运动,提出了二阶动态系统的速度一致性算法.传统的有界空间一致性算法只适合矩形有界空间,对于非矩形有界空间不再适用.为了将已有的一致性算法扩展到非矩形空间,引入镜像速度矩阵的概念,它不仅可将不连续的实际速度转化成连续的镜像速度,而且可将有界空间扩展成无限大虚拟空间.运用此算法,发现多智能体在虚拟空间中镜像速度渐近一致.由于每个镜像速度对应唯一的实际空间速度,多智能体实际速度也达到渐近一致.最后,通过理论证明和数值仿真验证了算法的可行性,并且成功地将算法运用到一组实际多机器人系统上.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期74-79,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.61273110) the Specialized Fund for the Doctoral Program of Higher Education(No.20130092130002)
关键词 multi-agent system CONSENSUS non-rectangularbounded space mirrored velocity 多智能体系统 一致性 非矩形有界空间 镜像速度
  • 相关文献

参考文献11

  • 1Zavlanos M M, Jadbabaie A, Pappas G J. Flocking while preserving network connectivity [ C ]//Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, 2007: 2919- 2924.
  • 2Wang W K, Peng H X. Flocking control with communi- cation noise based on second-order distributed consensus algorithm [ C ]//Power Engineering and Automation Conference. Wuhan, China, 2012 : 1 - 4.
  • 3Olfati-Saber R. Flocking for multi-agent dynamic sys- tems: algorithms and theory [J]. IEEE Transactions on Automatic Control, 2006, 51(3): 401-420.
  • 4Cao H, Chen J, Mao Y T, et al. Formation control based on flocking algorithm in multi-agent system [ C ]// Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China, 2010: 2289- 2294.
  • 5Dong Y, Huang J. A leader-following rendezvous prob- lem of double integrator multi-agent systems [ J ]. Auto- matica, 2013, 49(5) : 1386 - 1391.
  • 6PENG Ke SU Hou-Sheng YANG Yu-Pu.Coordinated Control of Multi-Agent Systems with a Varying-Velocity Leader and Input Saturation[J].Communications in Theoretical Physics,2009,52(9):449-456. 被引量:1
  • 7Su H, Wang X, Chen G. Rendezvous of multiple mobile agents with preserved network connectivity [ J]. Systems &Control Letters, 2010, 59(5) : 313-322.
  • 8Abdessameud A, Tayebi A. On consensus algorithms de- sign for double integrator dynamics [ J ]. Automatica, 2013, 49( 1 ) : 253 -260.
  • 9Chen Z Y, Zhang H T, Fan M C, et al. Algorithms and experiments on flocking of multiagents in a bounded space [ J ]. IEEE Transactions on Control Systems Tech- nology, 2014, 22(4) : 1544 - 1549.
  • 10Zhang H T, Zhai C, Chen Z Y. A general alignment re- pulsion algorithm for flocking of multi-agent systems[J]. IEEE Transactions on Automatic Control, 2011,56 (2) : 430-435.

二级参考文献19

  • 1A. Okubo, Advances in Biophys. 22 (1986) 1.
  • 2H. Su, X. Wang, and Z. Lin, IEEE Trans. Automat. Contr. 54 (2009) 293.
  • 3H. Su, X. Wang, and G. Chen, Int. J. Contr. 82 (2009) 1334.
  • 4H. Su, X. Wang, and W. Yang, Asian J. Contr. 10 (2008) 238.
  • 5H. Zhang, M.Z.Q. Chert, G.B. Stan, T. Zhou, and J.M. Maciejowski, IEEE Circuits Sys. Mag. 8 (2008) 67.
  • 6H. Zhang, M.Z.Q. Chen, and T. Zhou, Phys. Rev. E 79 (2009) 016113.
  • 7H. Zhang, M.Z.Q. Chen, T. Zhou, and G.B Stan, Eur. Phys. Lett. 83 (2008) 40003.
  • 8H. Zhang, M.Z.Q. Chen, and T. Zhou, Eur. Phys. Lett. 86 (2009) 4011.
  • 9W. Ren and R. Beard, IEEE Trans. Automat. Contr. 50 (2005) 665.
  • 10A. Fax and R.M. Murray, IEEE Trans. Automat. Contr. 49 (2004) 1465.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部