期刊文献+

Variable damping forces caused by electromagnetic energy harvesting with an adjustable load

基于电磁能量回收和可调负载的可变阻尼作用(英文)
下载PDF
导出
摘要 A novel variable damper using an adjustable energy harvesting structure is proposed for semi-active vibration systems. The fluid flowing in a hydraulic cylinder is employed to drive an electromagnetic generator for harvesting vibration energy, which on the other hand, leads to a damping effect of the hydraulic damper. To make the damping force variable, an adjustable resistor is adopted to tune the capability of energy harvesting. The present approach is validated by both theoretical analysis and experimental evaluation. When connected with different resistance loads, the prototype damper has different equivalent damping coefficients ranging from 3. 987 × 104 to 2. 488 × 105 N· s/m. The results show that the damping force of the damper is variable in response to the adjustable load for the vibration energy harvesting. 采用可调的振动能量回收方法,提出了一种面向半主动振动系统应用的新型变阻尼装置.该阻尼装置利用油液在液压缸中的流动来驱动电磁发电机,从而回收振动能量,同时液压缸的两端产生阻尼作用.采用可调的电阻负载来改变振动能量的回收能力,进而实现了阻尼作用的可变调节.理论分析和实验评估验证了所提出的可变阻尼调节系统的有效性,在系统与不同电阻负载相连接的条件下,阻尼系统原理样机的等效阻尼系数可以实现在3.987×104~2.488×105N·s/m之间变化.结果表明,该系统通过负载调节振动能量回收能力,实现了阻尼装置的阻尼作用可变调节.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期100-106,共7页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.51375517) the Natural Science Foundation of CQ CSTC(No.2012JJJQ70001) the Project of Chongqing Innovation Team in University(No.KJTD201313)
关键词 variable damper vibration energy harvesting electromagnetic generator LOAD 可变阻尼器 振动 能量回收 电磁发电机 负载
  • 相关文献

参考文献19

  • 1Ren W, Zhang J, Jin J. The virtual tuning of an automat- ic shock absorber[ J]. Journal of Mechanical Engineering Science, 2009, 223( 11 ) : 2655 -2662.
  • 2Polycarpou P C, Komodromos P, Polycarpou A C. A nonlinear impact model for simulating the use of rubber shock absorbers for mitigating the effects of structural pounding during earthquakes [J].Earthquake Engineer- ing &Structural Dynamics, 2013, 42( 1 ) : 81 - 100.
  • 3Koylu H, Cinar A. The influences of worn shock absorb- er on ABS braking performance on rough road[ J]. Inter- national Journal of Vehicle Design, 2011, 57 ( 1 ) : 84 - 101.
  • 4Hu H S, Jiang X Z, Wang J, et al. Design, modeling, and cSntrdlling of a large-scale magnetorheological shock absorber under high impact load [ J ]. Journal of Intelli- gent Material Systems and Structures, 2012, 23(6) : 635 - 645.
  • 5Roundy S, Wright P K, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes [ J]. Computer Communications, 2003, 26( 11 ) : 1131 - 1144.
  • 6Fodor M G, Redfield R. The variable linear transmission for regenerative damping in vehicle suspension contro[ J ]. Vehicle System Dynamics, 1993, 22 (1) : 1 -20.
  • 7Chen C, Liao W H. A self-sensing magnetorheological damper with power generation [ J ]. Smart Materials & Structures, 2012, 21(2) : 025014.
  • 8Choi K M, Jung H J, Lee H J, et al. Feasibility study of an MR damper-based smart passive control system emplo- ying an electromagnetic induction device [ J ]. Smart Ma- terials & Structures, 2007, 16 (6) : 2323 - 2329.
  • 9Sapifiski B. Vibration power generator for a linear MR damper[ J]. Smart Materials & Structures, 2010, 19 (10) : 105012.
  • 10Suda Y, Nakadai S, Nakano K. Hybrid suspension sys- tem with skyhook control and energy regeneration [ J ]. Vehicle System Dynamics, 1998, 28(S1) : 619-634.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部