期刊文献+

不同载荷下TC11合金等离子表面渗Mo层的摩擦磨损性能(英文) 被引量:3

Tribological Behavior of Plasma Mo-Alloyed Layer on TC11 Alloy under Different Loads
原文传递
导出
摘要 采用双辉等离子冶金技术制备渗Mo层,并研究其不同载荷下的摩擦行为和磨损机制。采用SEM、EDS和XRD表征渗Mo层的微观形貌、成分分布以及相结构。结果表明:渗Mo层厚度为20μm,致密均匀,其相主要为Mo、Al3Ti和Al8(Ti3-x Mox)。为了研究渗Mo层的摩擦行为,分别在载荷1.3,5.3和9.3 N对其进行滑动磨损试验。随着载荷的增加,渗Mo层的平均摩擦系数和磨损率都呈上升趋势。根据载荷1.3 N条件下的三维形貌、SEM照片和能谱分析,得出其磨损机制为轻微磨粒磨损和氧化磨损;在载荷5.3 N条件下,氧化磨损和磨粒磨损为主要磨损机制;在载荷9.3 N条件下,主要磨损机制为氧化磨损、磨粒磨损和粘着磨损。 The tribological behavior and wear mechanism of a Mo-alloyed layer prepared by a double-glow plasma surface alloying technique were investigated under different loads. The microstructure, the composition distribution and the phase structure of the Mo-alloyed layer were characterized by SEM, EDS and XRD, respectively. The results show that the uniform and compact Mo-alloyed layer with 20 μm thickness is composed of phases Mo, Al3 Ti and Al8(Ti3-xM ox). The sliding wear experiments were performed under different loads(1.3, 5.3 and 9.3 N) in order to examine the tribological properties of the Mo-alloyed layer. The average friction coefficients and the wear rates of Mo-alloyed layer both show an upward tendency with the increased of loads. Mild abrasion wear and oxidative wear could be detected under 1.3 N load based on the analysis results of 3D surface morphologies, SEM and EDS. The wear mechanism under 5.3 N load is dominated by oxidative wear and abrasion wear. Oxidative wear, abrasion wear and adhesive wear are the main wear mechanism under 9.3 N.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第3期557-562,共6页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51174119) the Fundamental Research Funds for the Central Universities the Aeronautical Science Foundation of China(2012ZF52071)
关键词 摩擦磨损性能 渗Mo层 等离子表面冶金 载荷 tribological behavior Mo-alloyed layer double-glow plasma surface alloying load
  • 相关文献

参考文献34

  • 1Zumbo, Leofanti J, Corradi S et al. Acta Astronautic[J], 2003, 53: 533.
  • 2Kim I Y, Choi B J, Kim Y J et al. Wear[J], 2011, 271(9): 1962.
  • 3Gurrappa I, Reddy D V. Journal of Alloys and Compounds[J], 2005,390(1): 270.
  • 4Rack H J, Qazi J I. Materials Science and Engineering C[J], 2006,26(8): 1269.
  • 5Niu Q L, Zheng X H, Ming W W et al. Tribology Transactions [J], 2013, 56(1): 101.
  • 6Ma Dayan, Ma Shengli, Xu Kewei. Vacuum[J], 2005, 79(1): 7.
  • 7Kuo D H, Huang K W. Surface and Coatings Technology[J], 2001, 135(2): 150.
  • 8Liu P, Zhao B Z, Zhang Y B et al. Materials Research Innovations[J], 2013, 17(1): 35.
  • 9Liu Y H, Li J, Xuan F z. Surface Engineering[J], 2012, 28(8): 560.
  • 10Silva M M, Veda M, Pichon L et al. Nuclear Instruments and Methods in Physics Research[J], 2007, 257(1-2): 722.

同被引文献25

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部