期刊文献+

细胞骨架改构在LPS作用后VE-Cad胞吞途径转化中的作用 被引量:2

Role of Cytoskeleton Structure in The Transformation of Endocytosis Pathways of Vascular Endothelial Cadherin after Lipopolysaccharide Treatment
原文传递
导出
摘要 目的探索细胞骨架解聚剂细胞松弛素D(Cyt D)和稳定剂Jasplakinolide(Jasp)通过改构细胞骨架结构对LPS作用后网格蛋白/微囊介导的血管内皮细胞钙黏蛋白(VE-Cad)胞吞、膜VE-Cad表达和血管通透性的影响。方法采用CRL-2922细胞进行实验,各组均于组别对应的时点检测(空白对照组任意时点皆可)。1将细胞分为空白对照组、LPS-1 h组及LPS-4 h组,观察细胞骨架。2将细胞分为LPS-1 h组、Cyt D+LPS-1 h组、LPS-4 h组及Jasp+LPS-4 h组,检测网格蛋白/Cav1与VE-Cad共沉淀和膜VE-Cad的表达水平。3将细胞分为空白对照组、LPS-1 h组、Cyt D+LPS-1 h组、LPS-4 h组及Jasp+LPS-4 h组,检测单层细胞的累积荧光透过率。结果 1空白对照组中肌动蛋白呈均匀散在分布,细胞骨架无明显的聚合;LPS-1 h组中细胞骨架发生明显的聚合,张力丝形成;LPS-4 h组中细胞骨架解聚,张力丝消失。2与LPS-1 h组比较,Cyt D+LPS-1 h组中网格蛋白与VE-Cad的共沉淀水平较低(P<0.05),Cav1与VE-Cad的共沉淀水平较高(P<0.05),且膜VE-Cad的表达水平降低(P<0.05);与LPS-4 h组比较,Jasp+LPS-4 h组中网格蛋白与VE-Cad的共沉淀水平的差异无统计学意义(P>0.05),Cav1与VE-Cad的共沉淀水平较低(P<0.05),且膜VE-Cad的表达水平升高(P<0.05)。3与空白对照组比较,LPS-1 h组和LPS-4 h组的累积荧光透过率均较高(P<0.05);与LPS-1 h组比较,Cyt D+LPS-1 h组的累积荧光透过率较高(P<0.05);与LPS-4 h组比较,Jasp+LPS-4 h组的累积荧光透过率较低(P<0.05)。结论 LPS作用后细胞骨架先发生聚合然后解聚,这种改构促使VE-Cad胞吞途径从由网格蛋白介导转化到由微囊介导。 Objective To explore the effects of cytoskeleton depolymerizing agent and stabilizer on the clathrin/caveolae-mediated endocytosis, the expression of membrane vascular endothelial cadherin(VE-cad), and the vascular permeability by the transformation of cytoskeleton structure after lipopolysaccharide(LPS) treatment. Methods CRL-2922 cells were used in the experiments. Indexes were tested at corresponding time point according to name of group, but in blank control group indexes could be tested at any time point. CRL-2922 cells were divided into blank control group, LPS-1 h group, and LPS-4 h group to observe cytoskeleton structure; CRL-2922 cells were divided into LPS-1 h group,Cyt D+LPS-1 h group, LPS-4 h group, and Jasp+LPS-4 h group to determine the expression of membrane VE-cad,and to determine the expression of its co-immunoprecipitation with clathrin and caveolin-1(Cav1); besides, CRL-2922 cells were divided into blank control group, LPS-1 h group, Cyt D+LPS-1 h group, LPS-4 h group, and Jasp+LPS-4 h group to detect the cumulative infiltration rate. Results 1 The cytoskeleton showed a dynamic change after LPS treatment, the F-actin polymerized and stress fibers formed at 1 hour after LPS treatment, but depolymerized at 4 hours after LPS treatment. 2 Compared with LPS-1 h group, the level of co-immunoprecipitation of VE-cad with clathrin in Cyt D+LPS-1 h group decreased(P〈0.05), the level of co-immunoprecipitation of VE-cad with Cav1 increased(P〈0.05), and expression level of VE-cad in plasma membrane decreased(P〈0.05); compared with LPS-4 h group, there was no significant difference in the level of co-immunoprecipitation of VE-cad with clathrin of Jasp+LPS-4 h group(P〉0.05), but the level of co-immunoprecipitation of VE-cad with Cav1 decreased in Jasp+LPS-4 h group(P〈0.05), and expression level of VE-cad in plasma membrane increased(P〈0.05). 3 Compared with blank control group, the cumulative infiltration rates of LPS-1 h group and LPS-4 h group were both higher(P〈0.05); compared with LPS-1 h group, the cumulative infiltration rate of Cyt D+LPS-1 h group was higher(P〈0.05); compared with LPS-4 h group, the cumulative infiltration rate of Jasp+LPS-4 h group was lower(P〈0.05). Conclusion Actin cytoskeleton shifts from polymerization to depolymerization after LPS treatment, the structural change of actin cytoskeleton is an important reason for the transformation of VE-cad endocytosis pathway from clathrin-mediated to caveolae-mediated after LPS treatment.
出处 《中国普外基础与临床杂志》 CAS 2015年第3期269-273,共5页 Chinese Journal of Bases and Clinics In General Surgery
基金 "十二五"国家科技支撑计划(项目编号:2012BAI11B01) 军队"十二五"重点项目(项目编号:BWS12J033)~~
关键词 脂多糖 血管内皮细胞钙黏蛋白 网格蛋白 微囊 细胞骨架 血管通透性 Lipopolysaccharide Vascular endothelial cadherin Clathrin Caveolae Actin cytoskeleton Vascular hyperpermeability
  • 相关文献

参考文献25

  • 1Carrillo-Esper R,Sosa-García JO,Carrillo-Córdova JR,et al.Syndrome of abdominal compartment in trauma.Cir Cir,2012,80(6): 550-555.
  • 2Hamidian Jahromi A,Freeland K,Youssef AM.Intra-abdominal hypertension causes disruption of the blood-brain barrier in mice,which is increased with added severe head trauma.J Trauma Acute Care Surg,2012,73(5): 1175-1179.
  • 3张连阳,周健,孙士锦,白祥军,李幼生,张茂.创伤后腹腔高压症/腹腔间隙综合征诊治规范[J].中华创伤杂志,2012,28(11):961-964. 被引量:40
  • 4Rolando M,Munro P,Stefani C,et al.Injection of staphylococcus aureus EDIN by the bacillus anthracis protective antigen machinery induces vascular permeability.Infect Immun,2009,77(9): 3596-3601.
  • 5Lundblad C,Axelberg H,Grande PO.Treatment with the sphingosine-1-phosphate analogue FTY 720 reduces loss of plasma volume during experimental sepsis in the rat.Acta Anaesthesiol Scand,2013,57(6): 713-718.
  • 6Engqvist-Goldstein AE,Drubin DG.Actin assembly and endocytosis: from yeast to mammals.Annu Rev Cell Dev Biol,2003,19: 287-332.
  • 7Yarar D,Waterman-Storer CM,Schmid SL.A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis.Mol Biol Cell,2005,16(2): 964-975.
  • 8Engqvist-Goldstein AE,Warren RA,Kessels MM,et al.The actin-binding protein Hip1R associates with clathrin during early stages of endocytosis and promotes clathrin assembly in vitro.J Cell Biol,2001,154(6): 1209-1223.
  • 9Shen L,Turner JR.Actin depolymerization disrupts tight junctions via caveolae-mediated endocytosis.Mol Biol Cell,2005,16(9): 3919-3936.
  • 10Czupalla CJ,Liebner S,Devraj K.In vitromodels of the blood-brain barrier.Methods Mol Biol,2014,1135: 415-437.

二级参考文献45

  • 1黎介寿.急性腹腔间室综合征及其护理[J].中华护理杂志,2007,42(3):209-211. 被引量:96
  • 2Schtinemann HJ, Jaeschke R, Cook DJ, et al. An official ATS statement: grading the quality of evidence and strength of recom- mendations in ATS guidelines and recommendations. Am J Respir Crit Care Med, 2006, 174(5) :605 -614.
  • 3Sugrue M. Abdominal compartment syndrome. Curr Opin Crit Care, 2005, 11(4) :333 -338.
  • 4Bodn6r Z, Sipka S, Hajdu Z. The abdominal compartment syn- drome (ACS) in general surgery. Hepatogastroenterology, 2008, 55 ( 88 ) :2033 - 2038.
  • 5Malbrain ML, Cheatham ML, Kirkpatrick A, et al. Results from the international conference of experts on intra - abdominal hyper- tension and abdominal compartment syndrome. I. Definitions. In- tensive Care Med, 2006, 32 ( 11 ) : 1722 - 1732.
  • 6Cheatham ML, Malbrain ML, Kirkpatrick A, et al. Results from the international conference of experts on intra - abdominal hyper- tension and abdominal compartment syndrome, lI. recommenda- tions. Intensive Care Med, 2007, 33(6) :951 -962.
  • 7Guyatt G, Gutterman D, Baumann MH, et al. Grading strength of recommendations and quality of evidence in clinical guidelines: report from an American College of Chest Physicians Task Force. Chest, 2006, 129( 1 ) :174 - 181.
  • 8Balogh ZJ, van Wessem K, Yoshino O, et al. Postinjury abdomi- nal compartment syndrome: are we winning the battle? World J Surg, 2009, 33(6):1134- 1141.
  • 9Cheatham ML. Abdominal perfusion pressure monitoring in intra - abdominal hypertension. Acta Clin Belg, 2009, 64 (3) :244.
  • 10Daugherty EL, Liang HY, Taichman D, et al. Abdominal com- partment syndrome is common in medical intensive care unit pa- tients receiving large - volume resuscitation. J Intensive Care Med, 2007, 22(5):294-299.

共引文献39

同被引文献36

  • 1Mao M, Lei H, Liu Q,et aI.Effects of miR-33a-5P on ABCAl/Gl-mediated cholesterol efflux under inflammatory stress in THP-1 macrophages. PLoS One.2014;9(10): e109722o.
  • 2Pisetsky DS, Spencer DM. Effects of progesterone and estradiol sex hormones on the release of microparticles by RAW 264.7 macrophages stimulated by Poly(l:C). Clin Vaccine Immunol.2011 ;18(9): 1420-1426.
  • 3lizuka M, Ayaori M, Uto-Kondo H,et aI.Astaxanthin enhances ATP-bind ing cassette transporter AI/G 1 expressions and cholesterol efflux from macrophages J Nutr Sci Vitaminol (Tokyo).2012;58(2): 96-104.
  • 4Yvan-Charvet L, Wang N, Tall A R. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol.2010; 30(2): 139-143.
  • 5Li Z,Mintzer E,Bittman R.First synthesis of free cholesterol- BODIPY conjugates. J Org Chem. 2006; 71(4):1718-1721.
  • 6Gao S, Wang L, Liu W, et aI.The synergistic effect of homocysteine and lipopolysaccharide on the differentiation and conversion of raw264.7 macrophages. J Inflamm (Lond).2014;11:13.
  • 7Cho W, Kang JL, Park YM. Corticotropin-Releasing Hormone (CRH) Promotes Macrophage Foam Cell Formation via Reduced Expression of ATP Binding Cassette Transporter-1 (ABCA1). PLoS One,2015; 10(6): e0130587,.
  • 8Solanko LM, Honigmann A, Midtiby HS, et al. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure Biophys J. 2013; 105(9): 2082-2092.
  • 9Ariola FS, Li ZG, Cornejo C, et al. Membrane Fluidity and Lipid Order in Ternary Giant Unilamellar Vesicles Using a New Bodipy-Cholesterol Derivative. Biophys J 2009;96(7): 2696-2708.
  • 10Holtta-Vuori M, Uronen RL, Repakova J, et al. BODIPY-Cholesterol: A New Tool to Visualize Sterol Trafficking in Living Cells and Organisms. Traffic. 2008;9(11 ): 1839-1849.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部