期刊文献+

空投装备气囊缓冲系统评价方法 被引量:10

Research on Assessment Method of Airbag Cushion System for Airdropping Equipment
下载PDF
导出
摘要 以热力学理论和有限元法为基础,建立装备-气囊系统有限元模型,并利用试验数据对模型进行验证。对比结果表明,所建模型系统的精度较高,可以用在下一步的仿真分析工作中。针对缓冲气囊的复杂非线性模型计算规模大、难以进行大规模计算的问题,以着陆初速度、初始侧倾角、初始俯仰角、横向速度和地面坡度为变量,分别以最大冲击加速度、最大侧倾角、最大俯仰角以及气囊最大内压为响应,结合扩展拉丁超立方设计,采用径向基函数构建多工况响应代理模型。考虑空投装备在着陆过程中环境因素以及空投装备着陆姿态的影响,利用蒙特卡罗法结合代理模型对多工况下的空投装备着陆成功概率进行计算。通过计算得到着陆成功概率为95.84%,冲击加速度为其主要影响因素,气囊内压为次要因素。 Based on thermodynamics theory and finite element method, a finite element model of equipment and its airbag cushion system is established and verified experimentally. The simulation results are obtained under the same conditions of the airdrop test and the simulation results agree very well with the experimental results, which indicate the established model is valid for further research. Because nonlinear model of airbags cushion system is very complicated, the calculation takes tens of hours of CPU time. As a result, the large-scale calculation is impossible. In order to overcome this problem, surrogate models are employed instead of the complex finite element model based on extended latin hypercube method and radial basis function. Initial velocity, initial heeling angle, initial pitch angle, lateral velocity and gradient are variables, while maximum acceleration, maximum heeling angle, maximum pitch angle and maximum airbag pressure are responses. Considering the influence of landing condition, Monte Carlo method and surrogate model are used to calculate landing success probability of airdropping equipment under multi-condition. The landing success probability calculated is 95.84%. Acceleration is the primary contributor to cushion performance, while pressure inside airbag is secondary contributor.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第4期148-154,共7页 Journal of Mechanical Engineering
基金 装甲兵工程学院科研创新基金资助项目(2011CJ019)
关键词 空投装备 气囊缓冲系统 代理模型 蒙特卡罗法 评价 airdropping equipment airbag cushion system surrogate model Monte Carlo method assessment
  • 相关文献

参考文献10

  • 1BARROWS D, BURNER A, BERRY F, et al. Photogrammetric measurements of CEV airbag landing attenuation systems[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. AIAA 2008-0846.
  • 2ESGAR J, MORGAN landings on gas-filled Research Center, 1960. W. Analytical study of soft bags[R]. Cleveland : Lewis.
  • 3TAYLOR A. The case for explicit finite element analysis of fabric systems: A comparison to test data[C]//AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA 2001-2003.
  • 4TAYLOR A. Investigation of the application of airbag technology to provide a softlanding capability for military heavy airdrop[C]//AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. AIAA 2001-2045.
  • 5文桂林,乐永祥,尹汉锋,陈学军,蒋海滨.双气室缓冲气囊多学科设计优化[J].湖南大学学报(自然科学版),2010,37(7):27-31. 被引量:9
  • 6牛四波,王红岩,迟宝山.空投设备缓冲气囊的优化设计[J].装甲兵工程学院学报,2010,24(5):36-40. 被引量:20
  • 7WANG T, NEFSKE J. A new CAL3D airbag inflation model[R]. SAE, 880654, 1988.
  • 8杜志岐,邵朋礼.铝合金车体抗冲击能力的动态有限元仿真[J].兵工学报,2009,30(1):1-4. 被引量:31
  • 9郝贵祥.空降车空投着陆响应分析及缓冲气囊系统参数优化方法研究[D].北京:装甲兵工程学院,2011.
  • 10牛四波.空降车空投过程仿真及气囊参数匹配与优化研究[D].北京:装甲兵工程学院,2012.

二级参考文献12

共引文献49

同被引文献97

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部