期刊文献+

Yb_(0.3)Co_4Sb_(12)/Mo-Cu热电元件的界面结构与界面电阻 被引量:8

Interface Structure and Electrical Property of Yb_(0.3)Co_4Sb_(12)/Mo-Cu Element Prepared by Welding Using Ag-Cu-Zn Solder
下载PDF
导出
摘要 通过放电等离子烧结(SPS)实现阻挡层Ti-Al、过渡焊接层Ni与热电臂Yb0.3Co4Sb12的一体化烧结,使用Ag-Cu-Zn共晶合金完成热电元件Yb0.3Co4Sb12/Ti-Al/Ni与Mo-Cu电极的钎焊连接。扫描电镜(SEM)显示出Yb0.3Co4Sb12/Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu接头中各界面结合良好,无裂纹,成分分析发现Yb0.3Co4Sb12/Ti-Al界面存在Al Co、TiCo Sb及Ti Sb2等金属间化合物(IMC)。500℃下等温时效30 d后,Yb0.3Co4Sb12/Ti-Al界面处的金属间化合物厚度无明显变化;Ag-Cu-Zn/Ni界面处Cu、Zn扩散趋于稳定,Cu-Zn扩散层厚度达到约40μm。界面接触电阻测试结果表明,等温时效前后Yb0.3Co4Sb12/Ti-Al/Ni/Ag-Cu-Zn/Mo-Cu元件的界面接触电阻率均低于10μΩ·cm2。 The barrier layer of Ti-A1 and the contact layer of Ni were joined to Ybo.3Co4Sb12 simultaneously by us- ing spark plasma sintering (SPS) technique. The Mo-Cu electrode was then welded to thermoelectric element Yb0.3Co4Sb12/Ti-A1/Ni by using Ag-Cu-Zn alloy as solder. SEM results show that there are no cracks at the inter- faces of Yb0.3Co4Sbl2/Ti-A1/Ni/Ag-Cu-Zn/Mo-Cu thermoelectric joints. The EDS analysis shows that intermetallic compounds (IMCs) layer containing A1Co, TiCoSb and TiSb2 phases are formed at the interface between Yb0.3Co4Sb12 and Ti-A1. After thermal aging at 500℃ for 30 d, the inter-diffusions at both Yb0.3Co4Sb12/Ti-A1 inter- face and Ag-Cu-Zn/Ni interface tend to be steady. The contact electrical resistivity of the Yb0.3Co4Sbl2/ Ti-A1/Ni/Ag-Cu-ZrdMo-Cu thermoelectric joints are about 6.1μcm^2 after welding, and it maintained as low as 10μΩcm^2 even after thermal aged for 30 d.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第3期256-260,共5页 Journal of Inorganic Materials
基金 国家973计划项目(2013CB632504) 国家自然科学基金(51102260) 国家国际科技合作项目(2011DFB60150) 上海市科委技术标准专项基金(13DZ0501803)~~
关键词 热电元件 放电等离子烧结 钎焊 接触电阻率 thermoelectric element SPS braze contact electrical resistivity
  • 相关文献

参考文献2

二级参考文献11

  • 1Rowe D M.CRC Handbook of Thermoelectrics,USA,New York:CRC Press,1995:621-625.
  • 2Disalvo F J.Science,1999,285(30):703-705.
  • 3Orihashi M,Noda Y,Chen L D,et al.Proc.17th Inter.Conf.on Thermoelectrics,Japan,Nagoya:IEEE,1998:543-547.
  • 4Elgenk M S,Saber H H,Caillat T.Energ.Convers.Manage.,2003,44(11):1755-1759.
  • 5Sales B C,Mandrus D,Willams R K.Science,1996,272(12):1325-1327.
  • 6Nolas G S,Cohn J L,Slack G A.Phys.Rev.B,1998,58(1):164-168.
  • 7Tang X F,Zhang L M,Yuan R Z,et al.J.Mater.Res.,2001,16(12):3343-3348.
  • 8Lamberton G A,Tedstrom R H,Tritt T M,et al.J.Appl.Phys.,2005,97(11):113715-1-5.
  • 9Elgenk M S,Saber H H,Caillat T,et al.Energ.Convers.Manage.,2006,47(2):174-178.
  • 10Gao M,Rowe D M.J.Power Sources,1992,38(3):253-258.

共引文献9

同被引文献21

引证文献8

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部