期刊文献+

纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟 被引量:11

Molecular Dynamics Simulation on the Compressibility of Pentaerythritol Tetra in Nanogap
下载PDF
导出
摘要 季戊四醇四酯(Pentaerythritol tetra(2-ethylhexanoate),PETE)是良好的环境友好润滑剂。采用聚合物一致性力场(PCFF),分别在2种温度、3种初始油膜厚度和8种压力下对纳米间隙中PETE的压缩性能进行分子动力学模拟,研究润滑剂分子和密度的分布规律,并与经典宏观压缩试验得出的Tait方程计算值进行比较。结果表明,随着初始油膜厚度的增加,分子动力学模拟结果越接近Tait方程计算值,当初始油膜厚度为9.17 nm时,相对误差小于5%。在压缩过程中,油膜厚度和润滑剂的可压缩性能随着压力的增大而减小。对于不同初始油膜厚度的油膜,其压缩性能相近。由于PETE的分子结构中有较多且较长的支链,各方向尺度没有太大差异,受压缩后,除了接近固体壁面处有润滑剂原子聚集,其他地方不存在分层现象,且润滑剂与固体壁面之间不存在明显的空隙。 Pentaerythritol tetra (2-ethylhexanoate) (PETE) has been used as an environmentally friendly lubricant. Molecular dynamics (MD) simulations based on polymer consistent force field (PCFF) are adopted to investigate the molecule and density distributions of lubricant PETE in nanogap at two different temperatures, three different initial film thicknesses and a wide range of pressures. Results show that the densities of MD simulations are accurate to the values of Tait equation with the maximum initial film thickness (9.17nm), the deviations are less than 5%. The film thickness and compressibility of films decrease with increasing pressure on the wall, but the compressibility is similar for films with different initial film thicknesses. Because the PETE molecule consists of four long branched chains, different spatial scales are in the same magnitude, the phenomenon of fluid atoms tending to form layers parallel to confining walls has not been observed except for the regions of lubricant adjacent walls. Distinct excluded volumes have not been found at the liquid/wall interfaces.
作者 潘伶 高诚辉
出处 《机械工程学报》 EI CAS CSCD 北大核心 2015年第5期76-82,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51175085) 清华大学摩擦学国家重点实验室开放基金(SKLTKF13A09) 福州市科技基金(2012-G-128)资助项目
关键词 薄膜润滑 分子动力学模拟 季戊四醇四酯 压缩性能 聚合物一致性力场 thin film lubrication molecular dynamics simulation pentaerythritol tetra compressibility polymer consistent force field
  • 相关文献

参考文献33

  • 1HU Yuanzhong,GRANICK S.Microscopic study of thinfilm lubrication and its contributions to macroscopictribology[J].Tribology Letters,1998,5(1):81-88.
  • 2TRAVIS K P,TODD B D,EVANS D J.Departure fromnavier-stokes hydrodynamics in confined liquids[J].Physical Review E,1997,55(4):4288-4295.
  • 3GRANICK S.Motions and relaxations of confinedliquids[J].Science,1991,253(5026):1374-1379.
  • 4ZHANG C.Research on thin film lubrication:State of theart[J].Tribology International,2005,38(4):443-448.
  • 5VADAKKEPATT A,MARTINI A.Fluid compressibilitypredicted using atomistic simulations[J].TribologyInternational,2011,44(3):330-335.
  • 6BAIR S.High pressure rheoiogy for quantitativeelastohydrodynamics[M].Great Britain:Elsevier,2007.
  • 7雒建斌,黄平,温诗铸.纳米级润滑膜厚度测量研究[J].仪器仪表学报,1995,16(S1):148-152. 被引量:7
  • 8SUN Jie,WANG Wen,WANG Huasheng.Dependence ofnanoconfined liquid behavior on boundary and bulkfactors[J].Physical Review E,2013,87(2):023020.
  • 9ASPROULIS N,DRIKAKIS D.Wall-mass effects onhydrodynamic boundary slip[J].Physical Review E,2011,84(3):031504.
  • 10贾妍,刘恒,虞烈.楔形纳米流道内流体压力的分子动力学[J].机械工程学报,2011,47(15):61-69. 被引量:3

二级参考文献119

共引文献40

同被引文献52

引证文献11

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部