摘要
针对开关磁阻电机(switched reluctance motor,SRM)本体非线性所带来的难以建模的问题,研究了SRM的磁链特性在线建模。在分析边界约束RBF网络(boundary constraints radial basis function,BC-RBF)的拓扑结构与学习算法的基础上,提出了以DSP为控制核心的SRM磁链特性在线建模方法,搭建了磁链特性在线建模实验平台。18.5k W和132k W两台样机的在线建模实验结果表明,该方法能够实现不同功率等级下SRM磁链特性在线建模,建模误差小于0.01Wb,该方法通过转速开环恒定电流方式在线检测获得电机原始数据,因而无需增加额外硬件检测设备,具有可行性和可移植性,为开关磁阻电机的磁链特性建模提供了一种易于实现的方案。
For the purpose of resolving modeling difficulties of switched reluctance motor (SRM),brought by nonlinear characteristics,flux linkage characteristics on-line modeling of high power SRM was studied.On the basis of analyzing boundary constraints RBF neural network topology structure and learning algorithm,flux linkage characteristics on-line modeling method based on DSP was proposed.On-line modeling experiment platform of SRM was set up.Experiment results of 18.5 kW and 132 kW SRM show that the method can realize flux linkage characteristics on-line modeling under different power rating,the modeling error is less than 0.01Wb.The proposed method obtained original data by speed open-loop constant current on-line detection method,does not need additional hardware testing equipment and is feasible and portable for SRM modeling which provides an easy way to implement it.
出处
《电机与控制学报》
EI
CSCD
北大核心
2015年第2期83-88,共6页
Electric Machines and Control
基金
中国博士后科学基金(20100481176)
住建部科技计划项目(2014-K1-045)
江苏省高校自然科学研究项目(12KJD120002)
徐州市科技计划项目(KC14SM095)
徐州工程学院校科研基金(XKY2013207)
关键词
开关磁阻电机
磁链特性
边界约束
在线建模
神经网络
switched reluctance motors
flux linkage characteristics
boundary constraints
on-line modeling
neural network