期刊文献+

DSlT:面向传感网信息融合的证据推理方法 被引量:3

DSlT:An Evidence Reasoning Method for Information Fusion in Wireless Sensor Networks
下载PDF
导出
摘要 无线传感器网络信息融合技术是近期的研究热点和难点,其面临的主要挑战包括:对高冲突信息的处理以及算法轻量级的要求.从降低计算量和处理冲突信息2方面考虑,提出一种基于逻辑表达的证据推理方法 DSlT.通过对信息的逻辑表达保留了信息中的冲突部分,提出基于逻辑运算的证据组合规则,能较好地适应高冲突证据间的融合;通过定义新的焦元,有效地减少了焦元组合数目,从而大大降低了计算量.采用算例分析和真实场景实验2种方法分别对DSlT推理方法进行验证:算例分析表明DSlT能显著提升高冲突信息融合性能,同时在执行3维证据融合运行时间对比中,DSlT比DSmT减少了81.08%;在以图像传感器网络交通信息采集为背景的真实场景实验中,通过将本方法与DST,DSmT等典型融合方法进行比较,进一步表明了该方法的有效性和先进性,也展示出该方法在无线传感器网络信息融合领域的较大应用潜力. Information fusion in wireless sensor networks has recently been a focal point of research , meanwhile with many research challenges . The major challenges include the problem of high conflicting information fusion processing and the requirement for light‐weight algorithms with low computational complexity .In the paper ,an evidence reasoning method based on the logic expression , namely DSlT ,is proposed .By definition of the new combination rule of evidence based on the logic operation and by strict reservation of local conflict ,DSlT deals with high conflicting information fusion .By defining new focal elements ,the combination amount of focal elements is lowered greatly . Accordingly ,the computation cost is reduced dramatically .To verify the performance of DSlT ,we conduct two experiments .The first example experiment shows that our approach can effectively deal with high conflicting information fusion .Additionally ,compared with DSmT ,the computation cost of DSlT is reduced by 81.08% in the process of 3‐dimensional evidence fusion . In the real scene experiment ,vehicle classification is the application background . The traffic information acquisition platform based on an image sensor netw ork is used for collecting image data of vehicles . The comparison results further indicate the efficiency and advancement of DSlT . The experiments fully reveal the potential application prospect of DSlT in the research field of information fusion in wireless sensor networks .
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第4期972-982,共11页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61003292 61379134) 中国科学院战略性先导科技专项项目(XDA06010403) 国家国际科技合作专项项目(2013DFA10690)
关键词 基于逻辑表达的证据推理方法 无线传感器网络 信息融合 证据理论 高冲突 轻量级运算 Dempster-Shafer theory of evidence with logicals (DS1T) wireless sensor networks(WSNs) information fusion evidence theory high conflicting light-weight computation
  • 相关文献

参考文献18

  • 1Ahmed M, Huang Xu, Sharma D. A novel misbehavior evaluation with dempster-shafer theory in wireless sensor networks [C] //Proc of the the 13th ACM Int Symp on Mobile Ad Hoc Networking and Computing. New York: ACM, 2012:259-260.
  • 2Gao Lipeng, Jia Juan, Dong Laibin. An improved fusion algorithm of evidence theory [C] //Proc of IEEE CSQRWC'11. Piscataway, NJ: IEEE, 2011:1495-1498.
  • 3Smarandache F, Dezert J. Advances and Applications of DSmT for Information Fusion (collected works)[M]. New York: American Research Press, 2006.
  • 4Mordeson J, Wierman M, Clark T, et al. Linear Models in the Mathematics of Uncertainty [M]. Berlin: Springer, 2013:41-55.
  • 5李冬梅,林友芳,黄厚宽,田萱.基于证据理论的本体不一致性度量方法研究[J].计算机研究与发展,2013,50(3):559-567. 被引量:4
  • 6Yue Jun, Zhang Weiming, Xiao Weidong, et al. A novel cluster-based data fusion algorithm for wireless sensor networks [C] /Proc of IEEE WiCOM'll. Piseataway, NJ: IEEE, 2011:1-5.
  • 7曲圣杰,程咏梅,潘泉,梁彦,张绍武.冲突再分配DSmT及解决证据间矛盾的新方法[J].控制与决策,2009,24(12):1856-1860. 被引量:8
  • 8Shin J, Guibas L, Zhao Feng. A distributed algorithm for managing multi-target identities in wireless ad-hoc sensor networks [C] /Proc of the 2nd lnt Workshop on Information Processing in Sensor Networks. New York: ACM, 2003: 223-238.
  • 9Yager R. On the aggregation of prioritized belief structures [J]. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans, 1996, 26(6): 708-717.
  • 10Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures [J]. Computational Intelligence, 1988, 4(3); 244-264.

二级参考文献60

  • 1Dezert J, Smarandache F. On the generation of hyper-powersets for the DSmT[C]. Proc of Fusion 2008 Conf. Cairns, 2003: 1118-1125.
  • 2Sharer G. A mathematical theory of evidence [M]. Princeton: Princeton University Press, 1976.
  • 3Yager R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41 (2) : 93-138.
  • 4Dubois D, Prade H. Representation and combination of uncertainty with belief functions and possibility measures[J]. Computational Intelligence, 1998, 4 (3) : 244-264.
  • 5Floretin Smarandache, Jean Dezert. Advances and applications of DSmT for information fusion (collected works) [M]. New York: American Research Press Rehoboth, 2006.
  • 6Murphy C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29 (1): 1-9.
  • 7Zadeh L. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination[J]. AI Magazine, 1986, 7(2): 85-90.
  • 8Chen L H,Inform Sci,1997年,102卷,1/4期,111页
  • 9Xu Hong,IEEE Trans Syst Man Cybern,1996年,26卷,6期,698页
  • 10Xu Hong,IEEE Trans Syst Man Cybern.A,1996年,26卷,5期,599页

共引文献143

同被引文献23

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部