期刊文献+

改进的模糊关联规则及其挖掘算法 被引量:8

Improved fuzzy association rule and its mining algorithm
下载PDF
导出
摘要 针对现有网络事件的关联规则未考虑到事件发生频度,导致不能完整准确反映事件关联关系的问题,采用模糊理论将事件发生频度引入到关联规则中,定义网络事件之间改进的模糊关联规则;在传统遗传算法的基础上,引入并改进兴趣度和相似度的概念,采用小生境技术调整适应度函数,提出一种基于改进模糊遗传算法的网络关联规则挖掘方法。实验结果表明,改进的模糊关联规则显著拓宽了关联规则的内涵及其挖掘范围,降低了关联规则冗余度;所提挖掘方法具有一定效率优势。 Aiming at the problem that traditional association rules fail to reflect the association relations of events without considering occurrence frequency,fuzzy theory was adopted to introduce the occurrence frequency into association rules,and the fuzzy association rules of network events were defined.Meanwhile,interesting rate and similarity rate were introduced and improved,and little world technology was adopted to adjust applicability,then an improved genetic algorithm(GA)based network association rules mining algorithm was proposed.Experimental results show new association rules can extend their meaning and mining range,reduce the redundancy and improve the efficiency.
出处 《计算机工程与设计》 北大核心 2015年第4期942-946,共5页 Computer Engineering and Design
基金 国家863高技术研究发展计划基金项目(2012AA012704) 郑州市科技领军人才醒目基金项目(131PLJRC644)
关键词 关联规则 数据挖掘 模糊关联规则 模糊逻辑 遗传算法 association rule data mining fuzzy association rule fuzzy logic genetic algorithm
  • 相关文献

参考文献10

  • 1李锦泽,叶晓俊.关联规则挖掘算法研究现状[C]//第18届计算机技术与应用学术会议(CACIS).2007:216-220.
  • 2魏浩,陈性元,王超,杜学绘.一种基于数据流分析的网络行为检测[J].计算机应用研究,2013,30(12):3800-3803. 被引量:4
  • 3武玉刚,秦勇,宋继光,杨忠明.基于关联规则的入侵检测算法研究综述[J].计算机工程与设计,2011,32(3):834-838. 被引量:7
  • 4韩家炜.数据挖掘:概念与技术[M].3版北京:机械工业出版社,2012.
  • 5Wu Kaixing, Hao Juan, Wang Chunhua. Application of fuzzy association rules in intrusion detection [C] //International Conference on Internet Computing and Information Services, 2011: 269-272.
  • 6Ahadeh MS, Harold M, Jafar H. Design and analysis of ge- netic fuzzy systems for intrusion detection in computer networks [J]. Expert System with Applications, 2011, 38: 7067-7075.
  • 7Su Mingyang, Lin Chunyuen, Shengwei Chien. Genetic-fuzzy association rules for network intrusion detection systems [C] //IEEE International Conference on Fuzzy Systems, 2011 : 2046-2052.
  • 8Nikky Rai, Susheel Jain, Anurag Jain. Mining interesting positive and negative association rule based on improved genetic algorithm [J]. International Journal of Advanced Computer Science and Applications, 2014, 5 (1): 160-165.
  • 9Mohit K Gupta, Geeta Sikka. Association rules extraction using multi-objective feature of genetic algorithm [C] //Pro- ceedings of the World Congress on Engineering and Computer Science, 2013: 23-25.
  • 10赵连朋,金喜子,孙亮,姜文哲.基于小生境遗传算法的关联规则挖掘方法[J].计算机工程,2008,34(10):163-165. 被引量:5

二级参考文献36

共引文献23

同被引文献70

  • 1施亮,钱雪忠.基于Hadoop的并行FP-Growth算法的研究与实现[J].微电子学与计算机,2015,32(4):150-154. 被引量:15
  • 2易芝,汪林林,王练.基于关联规则相关性分析的Web个性化推荐研究[J].重庆邮电大学学报(自然科学版),2007,19(2):234-237. 被引量:11
  • 3晁凤英,杜树新.基于关联规则的食品安全数据挖掘方法[J].食品与发酵工业,2007,33(4):107-109. 被引量:15
  • 4王强,李孟军,陈英武.卷烟配方数据挖掘技术研究进展[J].中国烟草科学,2007,28(4):14-17. 被引量:8
  • 5Luo Y,Liu T,Tao D,et al.Multiview matrix completionfor multilabel image classification[J].IEEE Transactions onImage Processing,2015,24(8):2355-2368.
  • 6Xue Zhaohui,Du Peijun,Su Hongjun.Harmonic analysisfor hyperspectral image classification integrated with PSOoptimized SVM[J].IEEE Journal of Selected Topics inApplied Earth Observations and Remote Sensing,2014,7(6):2131-2146.
  • 7Sun Zhenan,Zhang Hui,Tan Tieniu,et al.Caltech-101 imageclassification based on hierarchical visual codebook[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(6):1120-1133.
  • 8Barros R C,Basgalupp M P,Freitas A A.Evolutionarydesign of decision-tree algorithms tailored to microarray gene expression data sets[J].IEEE Transactions on Evolutionary Computation,2014,18(6):873-892.
  • 9Romani L A S,Avila A M H,Chino D Y T.A new timeseries mining approach applied to multitemporal remotesensing imagery[J].IEEE Transactions on Geoscience andRemote Sensing,2013,51(1):140-150.
  • 10Binu T,Raju G.A novel unsupervised fuzzy clusteringmethod for preprocessing of quantitative attributes in associationrule mining[J].Information Technology and Management,2014,15(1):9-17.

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部