期刊文献+

高中生对平面概念的理解:数学史的视角

Senior Middle School Students' Understanding of the Concept of Plane: A Historical View
下载PDF
导出
摘要 原始概念在数学发展和数学教学中具有重要意义。"平面"是中学几何课程中的原始概念之一。通过对上海和云南两地高中生的调查发现,大多数高中生对平面概念的理解处于直观水平,部分高中生对于平面概念的理解与历史上的数学家存在一定的相似性。 Primitive concepts play an important role in the development of Mathematics and Mathematics instruction. The concept of Plane is one of primitive concepts of Geometry. A questionnaire survey is conducted to students from two senior middle schools in Shanghai and Yunnan Province and the following conclusions are obtained: most students'under- standing of the concept of Plane is at the level of visualization, and part of students demonstrate the historical parallelism compared to the understanding of some mathematicians in Mathematics history.
出处 《成都师范学院学报》 2015年第3期113-116,共4页 Journal of Chengdu Normal University
基金 广西高校科学技术2013年度研究项目(2013LX018)
关键词 原始概念 平面 理解 历史相似性 primitive concept plane understanding historical parallelism
  • 相关文献

参考文献5

  • 1杜树芳.谈数学原始概念的赋意性[J].大连教育学院学报,1995,11(Z1):87-89. 被引量:1
  • 2Zormbala, K. , Tzanakis, C. The concept of the plane in geometry: elements of the historical evolution inherent in modem views [ J ]. Mediterranean Journal for Research in Mathematics Education, 2004,3 ( 1 - 2) : 37 - 61.
  • 3赵瑶瑶,张小明.关于历史相似性理论的讨论[J].数学教育学报,2008,17(4):53-56. 被引量:21
  • 4Proclus. A Commentary on the First Book of Euclid Ele- ments (2nd Print edition)[ M]. Glenn R. Morrow trans- late. Princeton: Princeton University Press. 1992.
  • 5(古希腊)欧几里得.几何原本(第2版)[M].兰纪正,朱恩宽,译.西安:陕西科学技术出版社.2003.

二级参考文献12

  • 1Freudenthal H. Didactical Phenomenology of Mathematical Structures [M]. Dordrecht: Reidel Publishing Company, 1983.
  • 2Radford L. Historical Formation and Student Understanding of Mathematics [A]. In: Fauvel J, van Maanen J. History in Mathematics Education [C]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 3Thomaidis Y, Tzanakis C. Historical Evolution and Students' Conception of the Order Relation on the Number Line: the Notion of Historical "Parallelism" Revisited [W]. http://www.icme-organisers.dk/tsg17/Tzanakis-Thomaidis.pdf.
  • 4Harper E. Ghosts of Diophantus [J]. Educational Studies in Mathematics, 1987, (18): 75-90.
  • 5Moreno L E, Waldegg G. The Conceptual Evolution of Actual Mathematical Infinity [J]. Educational Studies in Mathematics, 1991, (22): 211-231.
  • 6Keiser J M. Struggles with Developing the Concept of Angle: Comparing Sixth-grade Students' Discourse to the History of Angle Concept [J]. Mathematical Thinking and Learning, 2004, 6(3): 285-306.
  • 7Zormbala K, Tzanakis C. The Concept of the Plane in Geometry: Elements of the Historical Evolution Inherent in Modem Views [W]. http://www.icme-organisers.dk/tsg17/Tzanakis-Zormbala.pdf.
  • 8Tzanakis C, Arcavi A. Integrating History of Mathematics in the Classroom: an Analytic Survey [A]. Fauvel J, van Maanen J. History in mathematics Education [C]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 9Bagni G T. the Role of the History of Mathematics in Mathematics Education: Reflections and Examples Proceedings of CERME- 1 [A]. Schwank I. Forschungsinstitut Fuer Mathematikdidaktik [C]. Osnabrueck, 2000.
  • 10Gulikers I, Blom K. "A Historical Angle", A survey of Recent Literature on the Use and Value of History in Geometrical Education [J]. Educational Studies in Mathematics, 2001, (47): 223-258.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部