摘要
中药材作为一种特殊的农产品,其价格态变化过程呈现出高度复杂的非线性特征,增加了中药材价格预测的难度.通过研究影响中药材价格的主要因素,并在分析传统价格预测方法的基础上,针对中药材价格变化具有随机性、突变性和非线性的特点,通过小波和RBF神经网络结合构建一个中药材价格预测模型(W-RBF).采用W-RBF神经网络模型对白芍价格进行预测,并将预测结果与RBF神经网络模型预测结果做了比较.实验结果说明,W-RBF神经网络模型预测准确率明显提高,比RBF神经网络模型更具优越性.
Chinese herbal medicine is a special agricultural product, and its price state change shows the characteristics of highly complicated nonlinear process, which increases the difficulty in predicting its price. This paper studies the main price-influencing factors, analyzes the traditional price prediction method, and, taking into consideration the fact that the price changes randomly, suddenly and non-linearly, builds a Chinese herbal medicine price forecast model which combines wavelet with the RBF neural network(W-RBF). The W-RBF neural network model makes a forecast to the price of radix paeoniae alba, and compares the prediction results to the RBF neural network model predictive results. The analysis results show that the W-RBF neural network model is superior to RBF neural network model, and that the predictions are obviously improved in accuracy.
出处
《西南民族大学学报(自然科学版)》
CAS
2015年第2期205-209,共5页
Journal of Southwest Minzu University(Natural Science Edition)
基金
安徽省振兴计划高等学校优秀青年人才重点基金项目(2013SQRL129ZD)
安徽省高等学校省级自然科学研究重点基金项目(KJ2014A171)
亳州市创新创业领军人才科研团队(亳组2014[21]号)
关键词
RBF神经网络
预测模型
中药材价格
wavelet
RBF neural network
prediction model
Chinese herbal medicine price