期刊文献+

关于两个投影矩阵的相互关系 被引量:2

Relationship between two projection matrices
下载PDF
导出
摘要 运用Moore-Penrose逆的定义及其性质和投影的定义去研究投影PR(A)和PR(AB)的相互关系,得到若干结果 .研究表明:若矩阵A,B满足如下条件:(1)BB*=I,(2)B为酉矩阵,(3)B为非奇异阵,(4)A是列满秩,B是行满秩,则两者相等;若对于任意矩阵A,B时,两者之间存在若干重要关系式,从而进一步刻画了它们的相互关系. This paper uses the definition and properties of Moore*Penrose inverse and the definition of projection to study the relationship bdtween the projection PR(A) and P(AB) ,and some results are obtained. Research shows that if the matrices A and B satisfy the following conditions : ( 1 ). BB ^* = I; (2). B is a unitary matrix; ( 3 ). B is a non-singular matrix; (4). A is full column rank and B is a full row rank, then they are equal. For any matrices A and B, there are several important relationships between the two. Thus the paper further describes the relationship between them.
出处 《西南民族大学学报(自然科学版)》 CAS 2015年第2期221-223,共3页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金(11161004) 广西自然科学基金(2013GXNSFAA019008)
关键词 MOORE-PENROSE逆 投影 矩阵 Moore-Penrose inverse projection matrix
  • 相关文献

参考文献14

  • 1BENISRAEL A,GREVILLE T N E.Generalized inverses:theory and applications[M].2nd ed.New York:Springer,2003.
  • 2何旭初 孙文瑜.广义逆矩阵引论[M].南京:江苏科学技术出版社,1990..
  • 3林丽琼,林鸿钊.关于投影算子的等价关系[J].福建师范大学学报(自然科学版),2004,20(2):21-26. 被引量:5
  • 4王洁,张海燕,吉国兴.两个算子乘积的一种广义逆序律[J].陕西师范大学学报(自然科学版),2010,38(4):13-17. 被引量:6
  • 5武淑霞,刘晓冀.C~*-代数上的广义逆序律[J].山东大学学报(理学版),2011,46(4):82-85. 被引量:5
  • 6GREVILLE T N E.Note on the generalized inverses of a matrix product.SIAM Rev,1966(8):518-521.
  • 7BOULDIN R H.The pseudo-inverse of a product[J].Siam J Appl Math,1973(24):489-495.
  • 8LU SHIJIE.The range and pseudo-inverse of a product[J].Tohoku.Math.journ,1987(89):89-94.
  • 9WERNER H J.When is B-A-a Generalized inverses of AB[J].Linear Algebra Appl,1994(210):255-263.
  • 10GOUVEIA M C,PUYSTJENS R.About the group inverse and Moorepenrose inverse of a product[J].Linear Algebra Appl,1991(50):361-369.

二级参考文献20

  • 1Laustsen N J.K-Theory for algebras of operators on Banach spaces[J].Canad J Math. Soc.,1999,59(2):715-728.
  • 2Zsak A. A Banach space whose operator algebra has K0-group Q[J].Proc.London Math.Soc.,2002,84(3):747-768.
  • 3哈尔莫斯 P R.希耳伯特空间问题集[M].上海:上海科学技术出版社,1984.
  • 4Greville T N E. Note on the generalized inverse of a matrix product[J]. SIAM Review, 1966, 8(4) :518-521.
  • 5Izumino S. The product of operators with closed range and an extension of the reverse order law[J]. Tohoku Mathematical Journal, 1982, 34(1): 43-52.
  • 6Xiong Zhiping, Zheng Bing. The reverse order laws for { 1,2,3 }- and { 1,2,4 }-inverses of a two-matrix product[J]. Applied Mathematics Letters, 2008, 21 (7): 649-655.
  • 7Djordjevic D S, Dincic N C. Reverse order law for the Moore-Penrose inverse [J]. Journal of Mathematical Analysis and Applications, 2010, 361(1):252-261.
  • 8Djordjevic D S. Further results on the reverse order law for generalized inverses [J]. SIAM Journal on Matrix Analysis and Applications, 2007,29(4): 1242-1246.
  • 9Wang Minghui, Wei Musheng, Jia Zhijiang. Mixed-type reverse-order law of (AB)^(13)[J].Linear Algebra and its Applications, 2009,430 : 1691-1699.
  • 10Wei Musheng, Guo Wenbin. Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices [J]. Linear Algebra and its Applications, 2002,342 : 117-132.

共引文献30

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部