期刊文献+

microRNAs在多能干细胞向心肌细胞分化中的作用 被引量:8

microRNAs Play Roles in Differentiation of Pluripotent Stem Cells into Myocardial Cells
下载PDF
导出
摘要 microRNAs(miRNAs)是长约22 nt的非编码RNAs,广泛参与细胞的增殖、分化、病变、修复和凋亡等多种生命活动.多能干细胞(pluripotent stem cells)是指体外具有自我更新和多向分化潜能的细胞,在一定条件下可被定向诱导分化为多种细胞类型.miRNAs在多能干细胞中表达丰富,并通过调控基因表达影响其自我更新及分化.由多能干细胞向心肌细胞分化的方法主要有3种,即拟胚体形成法、与内胚层细胞共培养法和特定诱导物添加法.虽然这3种方法均可成功诱导多能干细胞向心肌细胞分化,但重复率很低.所以,人们把研究的视野逐渐转向miRNAs——这个广泛参与细胞生命活动的小分子物质.大量研究表明,在多能干细胞中,不同的miRNAs可通过打靶不同基因影响其向心肌细胞分化.在间充质干细胞中,miR-1、miR-133和miR-499可分别打靶Hes-1、SRF和Pdcd4;而在胚胎干细胞中,miR-1和miR-499分别打靶Hand2和Pacs2促进其向心肌细胞分化.miRNAs在多能干细胞向心肌分化作用机制的研究必将促进再生医学在心脏疾病治疗上的应用. microRNAs (miRNAs) are long about 22 nt non-coding RNAs, involving in various life activities, such as proliferation, differentiation, pathological changes, repair, apoptosis, etc. Pluripotent stem cells are a class of self-renewal and differentiation potential ceils. More and more experimental results showed that these pluripotent stem cells could be directionally induced to multiple cell types. Mature miRNAs are expressed abundantly in pluripotent stem cells. They can control the self-renewal and differentiation of pluripotent ceils by regulating gene expression. Myocardial cells can be induced from pluripotent stem cells by three main methods. There are three methods to induce differentiation of myocardial cells in pluripotent stem ceils, which comprises: embryoid body formation, co-culturing with endoderm cell and specific inducer addition. Although these methods are feasible, the repetition rate is very low. People turn the perspective of the research field to miRNAs. A large study showed that different miRNAs could affect the differentiation of the pluripotent stem cell to cardiomyocytes by targeting different gene. miR-1, miR-133 and miR-499 can target Hes-1, SRF and Pdcd4 ,respectively in mesenchymal stem cells, while miR-1 and miR-499 can target Hand2 and Pacs2, resoectively in embryonic stem cells, both of which can make these cells differentiate into cardiomyocytes. The mechanism research on roles of miRNAs during pluripotent stem cell differentiation into myocardial cell will promote the application of regenerative medicine in the treatment of heart disease.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2015年第3期244-250,共7页 Chinese Journal of Biochemistry and Molecular Biology
基金 中央高校基本科研业务费专项资金资助(No.DL13EA06-02) 国家自然科学基金资助项目(No.31000990)~~
关键词 MIRNA 多能干细胞 心肌细胞 microRNAs pluripotent cell myocardial cells
  • 相关文献

参考文献53

  • 1Porrello ER,Mahmoud AI,Simpson E,et al.Regulation of neonatal and adult mammalian heart regeneration by the miR15 family[J].Proc Natl Acad Sci U S A,2013,110(1):187-192.
  • 2Zhou Q,Gallagher R,Ufret-Vincenty R,et al.Regulation of angiogenesis and choroidal neovascularization by members of microRNA-23~27~24 clusters[J].Proc Natl Acad Sci U S A,2011,108(20):8287-8292.
  • 3Fiedler J,Jazbutyte V,Kirchmaier BC,et al.MicroRNA-24 regulates vascularity after myocardial infarction[J].Circulation,2011,124(6):720-730.
  • 4NamYJ,Song K,Luo X,et al.Reprogramming of human fibroblasts toward a cardiac fate[J].Proc Natl Acad Sci U S A,2013,110(14):5588-5593.
  • 5Eulalio A,Mano M,Dal Ferro M,et al.Functional screening identifies miRNAs inducing cardiac regeneration[J].Nature,2012,492(7429):376-381.
  • 6Denli A M,Tops B B,Plasterk R H,et al.Processing of primary microRNAs by the microprocessor complex[J].Nature,2004,432(7014):231-235.
  • 7Gregory RI,Yan KP,Amuthan G,et al.The microprocessor complex mediates the genesis of microRNAs[J].Nature,2004,432(7014 ):235-240.
  • 8Lund E,Guttinger S,Calado A,et a1.Nuclear export of microRNA precursors[J].Science,2004,303(5654):95-98.
  • 9Xiao C,Rajewsky K.MicroRNA control in the immune system:basic principles[J].Cell,2009,136(1):26-36.
  • 10Dormady S P,Bashayan O,Dougherty R,et al.Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment[J].J Hematother Stem Cell Res,2001,10(1):125-140.

二级参考文献41

  • 1Powell-Braxton L, Hollingshead P, Warburton C, et al. IGF-I is required for normal embryonic growth in mice [ J ]. Genes Dev, 1993, 7(12B) :2609-2617.
  • 2Sumitani S, Goya K, Testa JR, et al. Aktl and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts [ J ]. Endocrinology, 2002, 143(3) :820-828.
  • 3Berkes C A, Tapscott S J. MyoD and the transcriptional control of myogenesis[J]. Cell Dev Biol, 2005, 16(4-5) :585-595.
  • 4Aurade F, and MRF4 Pinset C, myogenic cell line C3H10T1/2 [J]. Differentiation, Chafey P, et al. Myf5, MyoD, myogenin derivatives of the embryonic mesenchymal exhibit the same adult muscle phenotype 1994, 55(3) :185-192.
  • 5Mohun T J, Chambers A E, Towers N, et al. Expression of genes encoding the transcription factor SRF during early development of Xenopus laevis: identification of a CArG boxbinding activity as SRF[J]. EMBO J, 1991, 10(4) :933-940.
  • 6Papadopoulos N, Crow M T. Transcriptional control of the chicken cardiac myosin light-chain gene is mediated by two AT- rich cis-acting DNA elements and binding of serum response factor[J]. Mol Cell Biol, 1993, 13(11) : 6907-6918.
  • 7Mack C P, Thompson M M, Lawrenz-Smith S, et al. Smooth muscle alpha-actin CArG elements coordinate formation of a smooth muscle cell-selective, serum response factor- containing activation complex[J]. Circ Res, 2000, 86(2) : 221-232.
  • 8McDonald O G, Wamhoff B R, Hoofnagle M H, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo[J]. J Clin Invest, 2006, 116( 1 ) : 36- 48.
  • 9Biesiada E, Hamamori Y, Kedes L. et al. Myogenic basic helixloop-helix proteins and Spl interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter[ J]. Mol Cell Biol, 1999, 19 (4) :25?7-2584.
  • 10Sartorelli V, Webster K A, Kedes L. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG box binding factor, and Spl [ J ]. Genes Dev, 1990,4 ( 10 ) : 1811-1822.

共引文献22

同被引文献78

  • 1张淑芳,方芳,李琼书,靳丹虹,台桂香.FTY720对乳腺癌MCF-7细胞增殖及Bax/Bcl-2基因表达的影响[J].中国老年学杂志,2015,35(1):141-143. 被引量:10
  • 2牛玉宏,史剑慧,胡昕婴,葛均波.骨髓基质干细胞心肌化诱导过程中转录因子NKx2.5的表达[J].中国临床医学,2004,11(3):300-302. 被引量:5
  • 3蔡明清.心肌细胞再生和腔室重塑[J].中国分子心脏病学杂志,2002,2(1):49-50. 被引量:6
  • 4Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins [J]. J Mol Biol, 1961, 3:318-356.
  • 5Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk [J]. Front Genet, 2015, 6:2-12.
  • 6Jin K, Luo G, Xiao Z, et al. Noncoding RNAs as potential biomarkers to predict the outcome in pancreatic cancer [ J ]. Drug Des Devel Ther, 2015, 9:1247-1255.
  • 7Hoagland MB, Stephenson ML, Scott JF, et al. A soluble ribonucleic acid intermediate in protein synthesis [ J]. J Biol Chem, 1958, 231(1): 241-257.
  • 8Holley RW, Apgar J, Everett GA, et al. Structure of a ribonucleic acid [ J ]. Science, 1965, 147 (3664) : 1462- 1465.
  • 9Hayes EL, Lewis-Wambi JS. Mechanisms of endocrine resistance in breast cancer: an overview of the proposed roles of noncoding RNA [J]. Breast CancerRes, 2015, 17(1): 40-52.
  • 10Tordonato C, Di Fiore PP, Nieassio F. The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors [ J]. Front Genet, 2015, 6 : 72-87.

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部