期刊文献+

“类金字塔”状ZnO改善硅异质结电池近红外波段外量子效率

Improvement of External Quantum Efficiency for Silicon Heterojunction Cell in the Near-infrared Band Improved by "Pyramid" Morphology ZnO
下载PDF
导出
摘要 因晶体硅是间接带隙半导体材料,其较低的吸收系数限制了对近红外波段入射光的吸收。为此,引入金属有机化学气相沉积(MOCVD)技术制备的Zn O薄膜,并通过改变掺杂流量和沉积时间调节Zn O∶B(BZO)薄膜的光学和电学性能。将BZO薄膜用于硅异质结(SHJ)太阳电池的背反射电极,相比于传统结构,电池的反射率和外部量子效率在近红外波段得到显著改善。为进一步解释外量子效率增加的原因,在四甲基氢氧化铵(TMAH)湿法制绒的硅衬底上沉积BZO薄膜,得到了新型微纳米嵌套结构,并对其光吸收进行了测试分析。 Crystalline silicon has a lower absorption coefficient, which is ascribed to the indirect bandgap of materials, thus limits the absorption of incident light of near-infrared band. Therefore, the ZnO thin film deposited by metal organic chemical vapor deposition (MOCVD) was introduced and optical properties of ZnO: B(BZO) films were adjusted by changing doping flow and deposition time. A and electrical ppling this film to heterojunction(SHJ) solar cell resulted in significant improvement of the external quantum efficiency and reflectance. In order to further explain the reason of improvement, BZO thin film was deposited on the texturing silicon substrates obtained by tetramethylammonium hydroxide (TMAH) solution, a new nanometer- and micrometer-scale structure was obtained, and its light absorption was measured and analyzed.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第2期311-315,共5页 Journal of Synthetic Crystals
基金 国家重点基础研究发展计划(973计划)(2011CBA00706,2011CBA00707) 天津市科技支撑项目(12ZCZDGX03600) 国家高技术研究发展计划(863计划)(2013AA050302) 天津市重大科技支撑计划项目(11TXSYGX22100) 高等学校博士学科点专项科研基金(20120031110039)
关键词 ZnO:B薄膜 金属有机化学气相沉积 外量子效率 异质结太阳电池 ZnO: B film MOCVD external quantum efficiency heterojunction solar cell
  • 相关文献

参考文献25

  • 1Wu C, Crnnch C H, Zhlo L, et al. Near-unity Beln-land-gap Absorption by Microstructured Silicon[J]-Applied Physics I'lters,2(X)l ,78( 13 )1850-1852.
  • 2Tiedje T, Yablonovitch E, Cody G D, et al. Limiting Efficiency of Silicon Solar Cells [, J ]. Electron Devices, IEEE Transactions on, 1984,31 (5) : 711-716.
  • 3Rostan P, Rau U, Nguyen V, et al. Low-temperature a-Si: H/ZnO/A1 Back Contacts for High-efficiency Silicon Solar Cells[,J]. Solar Energy Materials and Solar Cells,2006,90 ( 9 ) : 1345-1352.
  • 4Kerschaver E V, Beaueame G, Back-contact Solar Cells: A Review[- J ]. Progress in Photovoltaics: Research and ApplicatiorLs ,2006,14(2) :107-123.
  • 5Lipovek B, Kre J, Isabella O, et al. Analysis of Thin-film Silicon Solar Ceils with White Paint Back Reflectors[- J]. Physica Status Solidi (C), 2010,7(3-4) :1041-1044.
  • 6Holman Z C, Filipi M, Descoeudres A, et al. Infrared Light Management in High-efficiency Silicon Heterojunction and Rear-passivated Solar Cells[ J]. Journal of applied Physics,2013,113( 1 ) :013107-1-13.
  • 7Holman Z C, Descoeudres A, Wolf S De, et al. Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Ceils With Dielectric/Metal Rear Reflectors[J]. Photovoltaics, IEEE Journal of,2013,3(4) :1243-1249.
  • 8Holman Z C, Deacoeudres A, Barraud L, et al. Current Losses at the Front of Silicon Heterojunction Solar Cells [, J . Photovoltaics, IEEE Jourital of,2012,2(1) :7-15.
  • 9Koida T, Fujiwara H, Kondo M, Hydrogen-doped In2 03 as High-mobility Transparent Conductive Oxide [-J ]. Japanese Journal of Applied Physics, 2007,46(28) :685-687.
  • 10Fay S, Steinhauser J, Oliveira N, et al. Opto-electronic Properties of Rough LP-CVD ZnO: B for Use as TCO in Thin-film Silicon Solar Cells[- J]. Thin Solid Films,2007,515 (24) : 8558-8561.

二级参考文献32

  • 1Pearton S J, Norton D P, Ip K, et al. Rencent Progress in Processing and Properties of ZnO [J]. Progress in Materials Science, 2005,50: 293.
  • 2Fay S, Feitknecht L, Schluchter R, et al. Rough ZnO Layers by LP-CVD Process and Their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells [C]. Technical Digest of the International PVSEC-14, Bangkok, Thailand, 2004:459.
  • 3Springer J, Rech B, Reetz W, et al. Light Trapping and Optical Losses in Microcrystalline Silicon Pin Solar Cells Deposited on Surface-textured Glass/ZnO Substrates [J]. Solar Energy Materials and Solar Cells, 2005,85: 1.
  • 4Szyszka B, Sittinger V, Jiang X, et al. Transparent and Conductive ZnO:Al Films Deposited by Area Reactive Magnetron Sputtering [J]. Thin Solid Films, 2003,442: 179.
  • 5Woon-Jo Jeong, Gye-Choon Park. Electrical and Optical Properties of ZnO Thin Film as a Function of Deposition Parameters[J]. Solar Energy Materials and Solar Cells, 2001,65:37.
  • 6Ning Z Y, Cheng S H, Ge S B, et al. Preparation and Characterization of ZnO:Al Films by Pulsed Laser Deposition [J]. Thin Solid Films, 1997,307: 50.
  • 7Ramakrishna Reddy K T, Gopalaswamy H, Reddy P J, et al. Effect of Gallium Incorporation on the Physical Properties of ZnO Films Grown by Spray Pyrolysis [J]. Journal of Crystal Growth, 2000,210: 516.
  • 8Masahiro Yoshino, Wilson Wenas W, Akira Yamada, et al. Large-area ZnO Thin Films for Solar Cells Prepared by Photo-induced Metalorganic Chemical Vapor Deposition [J]. Japanese Journal of Applied Physics, 1993,32 : 726.
  • 9Baosheng Sang, Seiichi Suzuki, Akira Yamada, et al. Growth of Low-resistive Textured ZnO Films by Atomic Layer Deposition and Their Application to a-Si Cells [A]. 14th European Photovoltaic Solar Energy Conference[C]. Barcelona, Spain, 30 June- 4 July, 1997:613.
  • 10Xu H Y, Liu Y C, Mu R, et al. F-doping Effects on Electrical and Optical Properties of ZnO Nanocrystalline Films [J]. Applied Physics Letters, 2005,86:123107.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部