期刊文献+

一种基于分裂高斯混合模型的背景建模算法 被引量:1

A Background Modeling Algorithm Based on Splitting Gaussian Mixture Model
下载PDF
导出
摘要 针对运动检测算法中目标空洞和环境噪声难以消除等问题,提出一种背景建模算法。将待处理图像通过三层高斯模糊滤镜,分层抽取图像信息,通过分层建立分裂高斯混合模型,进行建模并计算运动区域。将上层提取的低频信息以及建模后提取的粗块化运动目标,加入到下层的背景判定计算流程中,根据综合判定结果纠正下层错误的模型参数。在公共数据库中的实验结果表明,该算法在高效地去除了环境噪声的情况下,可保证所提取运动目标的准确性,并且对光照突变不敏感,有较好的检测率和较低的误检率。 Aiming at empty target and ambient noise,a background modeling algorithm is proposed. The image to be processed is filtered by three Gaussian blur filters in order to extract information stratified. Then,each layer builds splitting mixture Gaussian model group and computes change area. During processing,low-frequency information extracted from the upper layer is added to the modeling and gets contours of moving target w hich w ill join to the calculation of low er layer. The result tested on public video dataset indicates that the method ensures the accuracy of the extracted moving target w hen environmental noise is removed clearly. The method reduces the algorithm sensitivity for the scene illumination change and has a higher detection rate and low er false detection rate.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第4期190-194,共5页 Computer Engineering
关键词 运动检测 背景建模 高斯混合模型 背景差法 分裂模型 噪声消除 motion detection background modeling Gaussian Mixture Model(GMM) background subtraction method splitting model noise cancellation
  • 相关文献

参考文献13

  • 1Sarker M H,Sloane A. TGSF/TLoG Filter with Optical Flow Technique for Large Motion Detection [ J ] International Journal of Machine Graphics & Vision, 2007,16 ( 3 ) :207-219.
  • 2Stauffer C, Grimson W E L. Adaptive Background Mixture Models for Real-time Tracking [ C]//Proc- eedings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. Washington D. C. , USA :IEEE Press ,1999:246-252.
  • 3Haines T S F, Xiang Tao. Background Subtraction with Dirichlet Processes [ C ]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer ,2012:99-113.
  • 4Greggio N,Bernardino A, Laschi C, et al. Self-adaptive Gaussian Mixture Models for Real-time Video Segment- ation and Background Subtraction[ C ]//Proceedings of the 10th International Conference on Intelligent Systems Design and Applications. Washington D. C. , USA: IEEE Press, 2010:983-989.
  • 5Chen Zezhi, Ellis T. Self-adaptive Gaussian Mixture Model for Urban Traffic Monitoring System [ C ]//Proceedings of International Conference on Computer Vision Workshops. Washington D. C., USA: IEEE Press ,2011 1769-1776.
  • 6Xiong Weihua, Xiang Lei, Li Junfeng, et al. Moving Object Detection Algorithm Based on Background Sub- traction and Frame Differencing [ C ]//Proceedings of the 30th Chinese Control Conference. Washington D. C. , USA:IEEE Press ,2011:3273-3276.
  • 7Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction [ C]//Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C. ,USA :IEEE Press ,2004 : 1051-1054.
  • 8Lee D S. Effective Gaussian Mixture Learning for Video Background Subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (5) : 827 -832.
  • 9Gorur P, Amrutur B. Speeded up Gaussian Mixture Model Algorithm for Background Subtraction [ C ]// Proceedings of the 8th International Conference on Advanced Video and Signal-based Surveillance. Washington D. C. , USA : IEEE Press,2011:386-391.
  • 10Bouwmans T,Baf F E,Vachon B. Background Modeling Using Mixture of Gaussians for Foreground Detection : A Survey[ J]. Recent Patents on Computer Science,2008, 1:219-237.

二级参考文献14

  • 1Kass M, Witkin A, Terzopoulos D.Snakes: Active contour models[J]. Int J Comput Vis, 1988( 1 ) :321-332.
  • 2Paragios N, Deriche R.Geodesic active contours and level sets for the detection and tracking of moving objects[J].IEEE Trans on Pattem Analysis and Machine Intelligence, 2000,22 (3) : 266-280.
  • 3Chan T F, Vese L A.Active contours without edges[J].IEEE Trans on Image Processing,2001,10(2):266-277.
  • 4Li H, Yezzi A.Local or global minima: Flexible dual-front active contours[J].IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 2007,29 (1) : 1-14.
  • 5Cheng J R, Foo S W.Dynamic directional gradient vector flow for snakes[J].IEEE Trans on Image Pocessing, 2006, 15(6): 1563-1571.
  • 6Papandreou G, Maragos P.Multigrid geometric active contour models[J].IEEE Trans on Image Processing, 2007, 16(1): 229-240.
  • 7Chop D.Computing minimal surfaces via level set curvature-flow[J]. J Computational Physics, 1993,106: 77-91.
  • 8Caselles V, Kimmel R, Sapiro G.Geodesic active contours[C]// Proc IEEE Int'l Conf Computer Vision, 1995:694-699.
  • 9Malladi R, Sethian J A, Vemuri B C.Shape modeling with front propagation: A level set approach[J].lEEE Trans on Pattern Anal Machine Intell, 1995,17(2) : 158-175.
  • 10Venkatesh Y V, Kumar Raja S, Ramya N.Multiple contour extraction from graylevel images using an artificial neural network[J].IEEE Trans on Image Processing,2006,15(4) :892-899.

共引文献12

同被引文献12

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部