摘要
Human cell types affected by retinal diseases(such as age-related macular degeneration or retinitis pimentosa) are limited in cell number and of reduced accessibility. As a consequence, their isolation for in vitro studies of disease mechanisms or for drug screening efforts is fastidious. Human pluripotent stem cells(h PSCs), either of embryonic origin or through reprogramming of adult somatic cells,represent a new promising way to generate models of human retinopathies, explore the physiopathological mechanisms and develop novel therapeutic strategies. Disease-specific human embryonic stem cells were the first source of material to be used to study certain disease states. The recent demonstration that human somatic cells, such as fibroblasts or blood cells, can be genetically converted to induce pluripotent stem cells together with the continuous improvement of methods to differentiate these cells into disease-affected cellular subtypes opens new perspectives to model and understand a large number of human pathologies, including retinopathies. This review focuses on the added value of h PSCs for the disease modeling of human retinopathies and the study of their molecular pathological mechanisms. We also discuss the recent use of these cells for establishing the validation studies for therapeutic intervention and for the screening of large compound libraries to identify candidate drugs.
Human cell types affected by retinal diseases (such asage-related macular degeneration or retinitis pimentosa)are limited in cell number and of reduced accessibility. As aconsequence, their isolation for in vitro studies of diseasemechanisms or for drug screening efforts is fastidious.Human pluripotent stem cells (hPSCs), either of embryonicorigin or through reprogramming of adult somatic cells,represent a new promising way to generate models ofhuman retinopathies, explore the physiopathologicalmechanisms and develop novel therapeutic strategies.Disease-specific human embryonic stem cells were thefirst source of material to be used to study certain diseasestates. The recent demonstration that human somaticcells, such as fibroblasts or blood cells, can be geneticallyconverted to induce pluripotent stem cells together withthe continuous improvement of methods to differentiatethese cells into disease-affected cellular subtypes opensnew perspectives to model and understand a largenumber of human pathologies, including retinopathies.This review focuses on the added value of hPSCs for thedisease modeling of human retinopathies and the study oftheir molecular pathological mechanisms. We also discussthe recent use of these cells for establishing the validationstudies for therapeutic intervention and for the screeningof large compound libraries to identify candidate drugs.