期刊文献+

Research on Parallel K-Medoids algorithm based on MapReduce

Research on Parallel K-Medoids algorithm based on MapReduce
下载PDF
导出
摘要 In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced.
作者 Xianli QIN
出处 《International Journal of Technology Management》 2015年第1期26-28,共3页 国际技术管理
关键词 K-Medoids MAPREDUCE Parallel computing HADOOP ds算法 并行算法 编程模型 数据信息 内存容量 聚类算法 通信成本 运行效率
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部