期刊文献+

糖厂澄清工段生产指标建模及操作参数优化

Modeling of Key Production Indices and Operating Parameters Optimized Set for Sugar Clarification Process
下载PDF
导出
摘要 针对亚法糖厂澄清工段清汁色值和清汁残硫量难以在线测量的问题,提出了一种基于人工蜂群优化的在线极限学习机软测量方法;先用核主元分析法确定影响清汁质量的关键参数,建立基于在线极限学习机的软测量模型;同时利用人工蜂群算法对在线极限学习机的隐层参数进行寻优,优化所建模型;最后,使用带约束的粒子群对软测量模型进行优化求解,得到典型工况下的最优操作设定值,为后续工况操作提供参考依据;仿真结果表明,基于人工蜂群优化的在线极限学习机模型能够准确地预测清汁色值和残硫量,同时基于此模型优化的操作参数设定值能够达到期望的指标。 For the problem that the color value and residual sulfur content of clarified juice in the clarifying process of sugar factory are difficult to get online, put forward a kind of online extreme learning machine soft sensor based on artificial bee colony optimization method. First, using kernel principal component analysis method to determine the key parameters affecting the quality of iuice, establish the soft measurement model based on online extreme learning machine, and using artificial bee colony algorithm optimal initial weights and threshold for the extreme learning machine. Later on, using constrained particle swarm optimization algorithm of typical working conditions in past production process, to take the optimal set point hitting the target of technical indexes in the corresponding working conditions, this provide a reference basis for the subsequent condition of operation. The simulation results show that online extreme learning machine based on artificial swarm optimization model has better precision and optimization of operating parameters set value based on this model can achieve the desired index.
出处 《计算机测量与控制》 2015年第4期1198-1201,共4页 Computer Measurement &Control
基金 国家自然科学基金(61364007)
关键词 澄清工段 软测量 极限学习机 人工蜂群 约束粒子群 clarifying process soft sensor extreme learning machine artificial bee colony constrained PSO
  • 相关文献

参考文献11

  • 1吴梅.我国糖业发展现状及分析[J].食品研究与开发,2012,33(8):233-235. 被引量:3
  • 2刘和清,陈志成,李洪文.加强澄清工艺管理,提高白砂糖产品质量[J].广西轻工业,2007,23(3):5-6. 被引量:3
  • 3Gryzlov A,Schiferli W, Mudde R F. Soft-sensors: model-basedestimation of inflow in horizontal wells using the extended Kalmanfilter [J]. Flow Measurement and Instrumentation, 2013,34: 91-104.
  • 4Qiao J H,Chai T Y. Soft measurement model and its application inraw meal calcination process [J] . Journal of Process Control,2012,22: 344 -351.
  • 5Jin X,Wang S Y, Forbes F. Multiple model based LPV soft sensordevelopment with irregular/missing process output measurement[J]. Control Engineering Practice, 2012,20: 165 - 172.
  • 6宋春宁,刘少东,林小峰.制糖过程中递归模糊神经网络软测量技术[J].自动化与仪表,2013,28(6):28-32. 被引量:2
  • 7Lin X F,Liu Y P. Modeling for the clarification process of SugarMills with ESN [A] . Chinese Intelligent Automation Conference[C].
  • 8Liang N Y,Huang G B,Saratchandran P. A fast and accurate on-line sequential learning algorithm for feedforward networks [J].Neural Networks, IEEE.
  • 9Karaboga D,Basturk B. A powerful and efficient algorithm for nu-merical function optimization: artificial bee colony (ABC) algorithm[J] . Journal of Global Optimization, 2007, 39 C3) : 459 - 471.
  • 10王荣杰,詹宜巨,周海峰,蔡庆玲.人工蜂群优化算法在复数盲源分离中的应用[J].中国科学:信息科学,2014,44(2):199-220. 被引量:5

二级参考文献15

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部