期刊文献+

基于数据驱动的卫星锂离子电池寿命预测方法 被引量:18

Research on Data-driven Life Prediction Methods of Satellite Lithium-ion Battery
下载PDF
导出
摘要 锂离子电池由于具有工作电压高、质量轻、比能量高、寿命长和自放电率小等优点,成为替代传统镍氢、镍镉电池的第3代航天器用储能电源;寿命预测是锂离子电池健康管理的重要方面,是掌握电源性能衰退趋势的重要手段,锂离子电池寿命预测问题已成为电子系统健康管理领域的研究热点;针对锂离子电池的寿命预测问题,采用了NASA埃姆斯中心的锂离子电池地面试验采集的数据,然后重点研究了3种基于数据驱动的方法,并对锂离子电池的寿命进行了估计,最后对各种预测方法的效果进行了评价;实验结果表明,文本提出的基于数据驱动的方法能够有效地用于锂离子电池寿命预测中,在工程应用方面具有较高的实际价值。 Lithium ion battery has many advantages, such as high working voltage, light weight, high specific energy, long life and small self --discharge rate. It' s a alternative to traditional Ni--Mh battery or Ni--Ca battery and which becomes the third generation power for space energy storage. Life prediction is an important aspect in health management of Lithium--ion battery, it is also an important mean to understand the power performance decline. The reasearch on Life prediction method of Lithium--ion battery becomes a research hotspot in electronic health management system. Aiming at the life prediction methods of Lithium--ion battery, we adopted the experiment data which comes from the ground test sets of the NASA Ames Center. Then we studied three kinds of data--driven prediction methods, and estimated the life of Lithium ion battery. At last, we an alysed the effects of various prediction methods. Experimental results show that the proposed data--driven prediction method can be effectively used in life prediction of Lithium--ion battery, and it has strong practical value in engnneering application.
出处 《计算机测量与控制》 2015年第4期1262-1265,1272,共5页 Computer Measurement &Control
基金 北京市科委科技创新基地培育与发展工程专项项目(Z141101004414072)
关键词 锂离子电池 寿命预测 数据驱动 lithiumion battery life prediction data--driven
  • 相关文献

参考文献9

二级参考文献47

  • 1唐建,栾家辉,吕琛.小卫星电源系统遥测数据的区间预测技术[J].华中科技大学学报(自然科学版),2009,37(S1):210-212. 被引量:4
  • 2左召军,钟新辉.航材消耗的时间序列分析[J].长沙航空职业技术学院学报,2004,4(3):29-32. 被引量:8
  • 3李瑾,宋建社,王正元,朱昱.备件消耗预测仿真方法研究[J].计算机仿真,2006,23(12):306-309. 被引量:13
  • 4美国海军为解决备件短缺问题而制定的策略和倡议[EB/OL].国外质量与可靠性信息网,2005,http://www.cetin.net.cn/storage/cetin2/QRMS/ztzsbz71.htm.
  • 5Hua-kai Chiou,Gwo-Hshiung.Grey Prediction Model For the Planning Material of Equipment Spare parts in Navy of Taiwan[C].Proceedings of World Automation Congress,2004(17):315-320.
  • 6Craig C,Sherbrooke.Optimal Inventory Modeling of Systems:Multi-Echelon Techniques[M].Boston:Kluwer Academic Pub,2004.
  • 7S.L.Ho,M.Xie.The use of ARIMA Models for Reliability Forecasting and Analysis[J].Computers Industry Engineering,1998,35(1):213-216.
  • 8N.Singh.Stochastic Modeling of Aggregates & Products of Variable Failure Rates[J].IEEE Transaction on Reliability,1995,44(2):279-284.
  • 9Iyad A Salman.Forecasting Models for Maintenance Work Load With Seasonal Components[C].Reliability and Maintainability.2004 Annual Symposium-RAMS,2004:514-520.
  • 10George E.P.Box,Gwilym M.Jenkins.时间序列分析-预测与控制[M].北京:中国统计出版社,1997:101-149.

共引文献128

同被引文献164

引证文献18

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部