期刊文献+

线性分段连续型随机微分方程数值解的收敛性和稳定性 被引量:4

Convergence and Stability of Numerical Solutions for Linear Stochastic Differential Equations with Piecewise Continuous Arguments
下载PDF
导出
摘要 把Back-Euler方法应用到线性分段连续型随机微分方程上,研究对给定步长该方程数值解的收敛性和对任意步长数值解的均方稳定性,在处理线性项的矩阵时,证明的方法主要应用了矩阵范数,从而达到要研究线性分段连续型随机微分方程数值解的收敛性和稳定性的目的. In this paper, applying the Back -Euler method to linear stochastic differential equations with piecewise continuous arguments. The convergence of numerical solutions of the equation for given step size and stability in mean square of numerical solutions for any step size are studied. We base on definition of matrix norm in the linear matrix term. In order to study convergence and stability of semi - linear stochastic differential equations with piecewise continuous arguments.
机构地区 大庆师范学院
出处 《哈尔滨师范大学自然科学学报》 CAS 2015年第2期40-44,共5页 Natural Science Journal of Harbin Normal University
基金 大学生创新创业训练计划创新训练项目(201410235019)
关键词 分段连续型随机微分方程 Back-Euler方法 收敛性 稳定性 数值解 Linear stochastic differential equations with piecewise continuous arguments Back -Eulermethod Convergence Stability Numerical solutions
  • 相关文献

参考文献1

二级参考文献6

  • 1BUCKWAR E. Introduction to the numerical analysis of stochastic delay differential equations[ J]. J Comput Appl Math, 2000,125:297 -307.
  • 2KUCHLER U, PLATEN E. Strong discrete time approximation of stochastic differential equations with time delay [ J ]. Math Comput Simulation,2000,54:189 - 205.
  • 3LIU M Z, CAO W R, FAN Z C. Convergence and stability of the semi - implicit Euler method for a linear stochastic differential delay equation[J]. J Comput Appl Math, 2004,170:255 - 268.
  • 4MAO X R. Razumikhin -type theorems on exponential stability of stochastic functional differential equations[J]. Stoch Proc Appl, 1996,65:233- 250.
  • 5MAO X R. Stochastic differential equations and applications[ M ]. New York: Harwood, 1997.
  • 6MAO X R. Numerical solutions of stochastic differential equations under local Lipschitz condition [ J ]. J Comput Appl Math, 2003,151:215 -227.

共引文献2

同被引文献8

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部