期刊文献+

论Miller-Rabin算法预处理的局限性

Preprocessing Limit of Miller-Rabin Test
下载PDF
导出
摘要 信息安全领域中极为重要的公钥密码体制的关键在于生成两个大素数,目前虽已有多项式运行时间的确定性素性检测算法AKS算法,可惜运行时间还达不到实用要求,故还是快速实用的概率性素性检测算法Miller-Rabin算法为主流,但其有一点一直被忽略——Miller-Rabin算法直接控制的其实是误判率而不是出错率,而后者才是真正需要降低的。对此做了详细分析,同时考察一些利用素数分布特性的预处理措施在降低出错率方面的效果,并分析了这一类优化的效果极限,否定了其必要性,相比之下,针对算法底层的优化更为直接有效。 Public key cryptosystem is an extremely important part in information security field, and its key lies in generating two big primes. Nowadays, although there is polynomial-time definitive primality detec- ting algorithm, such as AKS algorithm, unfortunately its running time could not meet the practical de- mands, therefore, the fast and practical probabilistic primality testing algorithm, Miller-Rabin test, be- comes the main algorithm. However, some detail of Miller-Rabin test is always ignored: it is misjudgment probability not error probability that is directly controlled by the test, while the latter is what indeed needs to decrease. Detailed analysis of this point is given, and meanwahile, the effects of some methods with distribution features of primes to decrease error probability are tested. Finally, result limit is analyzed and its necessity negated. Comparison indicates that, the underlying algorithm is more effective. preprocesslng the optimized optimization of
作者 王景中 周靖
出处 《通信技术》 2015年第4期469-472,共4页 Communications Technology
基金 国家自然基金项目(No.61371142) 北京市创新团队建设提升计划(No.ID HT20130502)~~
关键词 素性检测 Miller-Rabin算法 误判率与出错率 素数分布 预处理的局限性 算法底层优化 primality test Miller-Rabin test misjudge probability and error probability prime distribu-tion preprocessing limit underlying optimization of algorithm
  • 相关文献

参考文献13

二级参考文献41

  • 1刘承彬,耿也,舒奎,高真,香子.有关中国剩余定理在多个素数的RSA解密运算中的加速公式的论证以及加速效率的估算[J].大连工业大学学报,2012,31(5):372-375. 被引量:3
  • 2陈作新,刘鸿雁.一种应用于IC卡数据加密的Rijndael改进算法[J].计算机工程,2005,31(1):155-156. 被引量:3
  • 3DAEMEN J, RIJMEN J. AES proposal: Rijndael [ J]. Ventura CA: NIST, 1998:29-45.
  • 4BONEH D, SHACHAM H. Fast variants of the RSA[ J]. RSA Laboratories Cryptobytes, 2002, 5(1) : 1 - 8.
  • 5PAIXAO C A M. An efficient variant of the rsa cryptosystem[ EB/ OL]. [2008 -05 -15]. http:// www. ime. usp. br/-capaixao/ paper, pdfl
  • 6JOYE M, LENSTRA A K, QUISQUATER J J. Chinese remaindering based cryptosystems in the presence of faults [ J]. Journal of Cryptology, 1999, 2(4) : 241 -245.
  • 7杨波.现代密码学[M].北京:清华大学出版社,2007.
  • 8[1]M Agrawal,N Kayal,N Saxena. Primes is in P.http://www.cse.iitk.ac. in/news/primality.pdf
  • 9[2]http://www.rsasecurity.com
  • 10[3]Michael Sipser. Introduction to Theory of Computation[M].PWS Publishing company, 1997

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部